REPORT
QUARTERLY GROUNDWATER SAMPLING
4th Quarter 2006
MARYLAND SQUARE SHOPPING CENTER
3661 SOUTH MARYLAND PARKWAY
LAS VEGAS, NEVADA
FOR AL PHILLIPS THE CLEANER

URS Corporation
Job No. 26698724.00005
January 5, 2007

January 5, 2007

National Drycleaners, Inc. 4510 W. 63rd Terrace Prairie Village, KS 66208 Attn: Mr. Randy Jackson Al Phillips the Cleaner 3250 Ali Baba Lane, Suites C-F Las Vegas, NV 89118 Attn: Mr. Stephen Mailloux

Re: 4th Quarter 2006 Groundwater Sampling

Maryland Square Shopping Center 3661 South Maryland Parkway, Las Vegas, Nevada Facility ID: H-000086

Gentlemen:

URS Corporation is pleased to submit the 4th Quarter 2006 quarterly groundwater sampling event report for the Maryland Square Shopping Center. Groundwater from 24 monitoring wells was sampled during this quarterly sampling event and samples were submitted to the laboratory to test for volatile organic compounds. Analysis of total organic carbon, dissolved iron, and manganese, chloride, nitrate, sulfate, and alkalinity was also performed for selected groundwater samples.

The Nevada Division of Environmental Protection (NDEP) requires the following statements to be provided by the responsible Environmental Manager for this project (per NRS 459.500):

"I hereby certify that all laboratory analytical data was generated by a laboratory certified by the NDEP for each constituent and media presented herein."

"I, Scott Ball, hereby certify that I am responsible for the services described in this document and for the preparation of this document. The services described in this document have been provided in a manner consistent with the current standards of the profession and to the best of my knowledge comply with all applicable federal, state, and local statutes, regulations and ordinances."

Sincerely, URS Corporation

Scott Ball, CEM #1316 Expires Oct 15, 2007 Project Manager

cc: Shannon Harbour, NDEP

REPORT 4th Quarter 2006 GROUNDWATER SAMPLING MARYLAND SQUARE SHOPPING CENTER 3661 SOUTH MARYLAND PARKWAY LAS VEGAS, NEVADA

Prepared for:

Al Phillips the Cleaner 3250 W. Ali Baba Lane, Suites C-F Las Vegas, Nevada 89118

and

National Drycleaners, Inc. 4510 W. 63rd Terrace Prairie Village, KS 66208

Prepared by:

URS Corporation 811 Grier Drive Las Vegas, Nevada 89119

Job No. 26698724.00005 January 5, 2007

			Page No.
1.0	INTRODU	UCTION AND BACKGROUND	1
2.0	GROUNE	DWATER SAMPLING PROCEDURES	3
3.0	FIELD D	ATA AND TEST RESULTS	5
	3.1	Water Levels and Gradient	5
	3.2	Groundwater Analyses and Chemistry	5
4.0	CONCLU	ISIONS	7
	4.1	Groundwater Sampling Conclusions	7
	4.2	Remedial Efforts AND ASSESSMENTS	7
5.0	REFEREN	NCES	8
		LIST OF TABLES	
	Table 1 Table 2 Table 3 Table 4	Summary of Well Characteristics and Groundwater Elevations Summary of Field Water Quality Measurements in Monitoring Wells Selected VOC Concentrations in Monitoring Wells Summary of Other Analytical Data	
		LIST OF FIGURES	
	Figure 1 Figure 2 Figure 3 Figure 4A Figure 4B Figure 5	Site Location Map Hydrographs for Shallow Monitoring Wells Groundwater Elevation Contours for Shallow Wells PCE Concentration vs. Time in Selected Shallow Wells PCE Concentration vs. Time for Intermediate Well MW-9 Shallow Monitoring Well PCE Concentrations and Contours	

APPENDICES

Appendix A Laboratory Reports and Chain-of-Custody Forms

1.0 INTRODUCTION AND BACKGROUND

This report presents the results of the 4th Quarter 2006 groundwater sampling event at the former Al Phillips the Cleaner (Al Phillips), Maryland Square Shopping Center located at 3661 South Maryland Parkway in Las Vegas, Nevada (Figure 1). This report includes the results of groundwater sampling of 24 monitoring wells during December 2006. URS Corporation (URS), on behalf of Al Phillips, conducted the work. As required by State law, this project is being performed under the supervision of a Certified Environmental Manager.

Al Phillips took over control of assessment activities at the site from the Herman Kishner Trust in Spring 2004. Prior to URS site investigations, Converse Consultants (Converse) performed several subsurface assessments and groundwater sampling at the former Al Phillips facility from August 2000 through March 2004. Converse's findings indicate that tetrachloroethylene (PCE) was detected in soil beneath the former facility and in groundwater adjacent to, and downgradient from, the facility. URS reviewed eleven Converse reports (see References) and other documents obtained from Converse and the Nevada Department of Environmental Protection (NDEP). URS then evaluated the data to assess whether or not the PCE source area for the groundwater plume, the lateral and vertical extent of the groundwater plume, the geology of the site, and the nature of PCE concentrations in the groundwater plume, were characterized. Based upon Converse's reports, concentrations of PCE above regulatory levels are present in soil beneath the former facility and in groundwater. Al Phillips and URS met with NDEP on April 29, 2004 to discuss the transfer of site responsibility to Al Phillips from the Herman Kishner Trust. Following this meeting, a work plan for additional characterization was prepared, with a final revised plan issued September 10, 2004 as noted above.

In addition to the data provided by Converse, URS obtained findings from SECOR International Incorporated (SECOR, 2004) regarding the presence of a hydrocarbon plume in downgradient monitoring well MW-11. This monitoring well is located on the Boulevard Mall Property, east of the former Al Phillips site. This well was sampled on February 12, 2004 by representatives from both SECOR and Converse. Analysis of the samples determined that a phase-separated liquid, identified as a weathered gasoline, was present in the groundwater from the well. SECOR has undertaken remedial action at this well to remove hydrocarbon-contaminated water.

In April 2005, URS drilled seven boreholes in and around the site of the former Al Phillips the Cleaner facility. URS drilled three boreholes (B-6, B-7, and B-8) around the area where the dry cleaning equipment was formerly located. The other five boreholes (B-9 through B-12) were drilled in areas surrounding the location. Soil samples were taken at five-foot intervals from each borehole, except for B-11 and B-12. Based on analytical results from the soil samples collected during the

April 2005 drilling and sampling event, only three soil samples (B-8-5', B-10-10', and B-10-15') exceeded the maximum soil primary remediation goal (PRG) for PCE of 3,400 micrograms per kilogram (μ g /kg) for soil located on an industrial parcel. The highest concentration detected was 120,000 μ g /kg in borehole B-10-10'.

In addition to the boreholes, six new groundwater monitoring wells were installed by URS in March 2005. These wells are MW-17, MW-18, MW-22, MW-23, MW-24, and MW-25. Well MW-17 is located in the parking area east of the building formerly occupied by Al Phillips. Monitoring wells MW-18, MW-22, MW-23, MW-24, and MW-25 were installed in the residential area downgradient (east) of the Boulevard Mall and Al Phillips. Two additional groundwater monitoring wells were installed by URS in March 2006. These wells are MW-26 and MW-27. Well MW-26 is located downgradient (east) of well MW-25 on Seneca Lane. Well MW-27 is located downgradient (east) of MW-26 on Ottawa Circle.

2.0 GROUNDWATER SAMPLING PROCEDURES

Groundwater samples from 24 existing monitoring wells (MW-1to MW-3, MW-5 to MW-10, MW-12 to MW-25, and MW-27) were collected during this sampling event on December 4 through 7, 2006. Monitoring well MW-11 is not sampled due to the presence of petroleum hydrocarbons. This issue is being investigated under the Underground Storage Tank Program. Shallow monitoring well MW-4 was unable to be sampled this event due to it being clogged with debris, and shallow monitoring well MW-26 was unable to be sampled this event due to landscape rocks piled on top of the well. An electronic water level meter, accurate to the nearest \pm 0.01 feet, was used to measure depth to water in each well. Total well depths were also measured by lowering the weighted probe to the bottom of the well and recording the depth to the nearest 0.1 foot.

Monitoring wells were then purged prior to sampling. A minimum of three casing volumes of groundwater was purged using a submersible pump and/or a dedicated bailer. When used, the pump was decontaminated before use in each well. Casing volumes were calculated based on total well depth, standing water level, and casing diameter. Water quality parameters were monitored during well purging to evaluate when stable values had been attained. Temperature, pH, and specific conductance (SC), dissolved oxygen (DO), turbidity, total dissolved oxygen (TDS), and oxidation reduction potential (ORP) were monitored during well purging. The depth to water, water quality measurements, and purge volumes were entered in the purge log.

Purge water and decontamination water was placed in DOT-approved 55-gallon drums. The drums were labeled and stored at the former Al Phillips facility, prior to disposal in accordance with regulations.

Monitoring wells were sampled using a clean disposable bailer. Groundwater samples were collected in five different types of containers based on the selected analysis. Water samples to be analyzed for VOCs were collected in three 40-milliliter clear glass VOA vials pre-preserved with hydrochloric acid. Three VOA vials were collected in case one was to break during transport. The VOA vials were filled so that there was no headspace. Water samples to be analyzed for total organic carbon (TOC) were collected in 250-milliliter amber glass bottles pre-preserved with sulfuric acid. Groundwater samples to be analyzed for dissolved iron and manganese were collected in 250-milliliter clear plastic bottles pre-preserved with nitric acid. These samples were filtered by the laboratory prior to analysis. Groundwater samples to be analyzed for chloride, nitrate, sulfate, and alkalinity were collected in 500-milliliter clear plastic bottles that contained no preservative. Due to the 48-hour holding time for the nitrate, groundwater samples were collected in 500-milliliter clear plastic bottles and pre-preserved with sulfuric acid in case the sample could not be analyzed

within 48 hours. Groundwater samples were transferred from the disposable bailer directly into the appropriate sample containers and were numbered by well number on the sample container.

Groundwater samples were labeled with the date and time the sample was collected, the sample and well number, and name of the firm and signature of the individual collecting the sample. The sample containers were sealed, labeled, and stored in a cooler with ice. Chain-of-custody forms (Appendix) were filled out with all the appropriate sample information, and accompanied the samples to the analytical laboratory. Field meter probes were decontaminated before use at each well.

3.1 WATER LEVELS AND GRADIENT

The depths to water in each of the 24 selected monitoring wells were measured December 4 through 7, 2006 and are listed in Table 1 along with historical data. The depth to groundwater in these twenty-five wells ranged from approximately 10.98 feet below top of casing in well MW-18 to 25.56 feet in well MW-16. Figure 2 shows hydrographs for the shallow wells during the last five years. In general, groundwater elevation has increased by approximately one half foot since the October 2006 sampling event. This is likely indicative of periodic groundwater fluctuation. Monitoring wells MW-26 and MW-27 had not been surveyed for elevation at the time of this sampling event. An elevation survey will be performed 1st Quarter 2007 so that groundwater contours in the eastern portion of the plume can be evaluated. The general flow direction for the shallow aquifer is eastward, as indicated by the groundwater contours and flow directions shown on Figure 3.

3.2 GROUNDWATER ANALYSES AND CHEMISTRY

The groundwater samples were analyzed for VOCs by U.S. EPA method 8260B. Selected samples from monitoring wells MW-1, MW-13, MW-18, and MW-25 were analyzed for total iron and manganese; chloride, nitrate, and sulfate; alkalinity; and TOC, by U.S. EPA methods 200.8, 300.0 and 310.1, and 415.1, respectively. The laboratory analytical reports and chain-of-custody forms are provided in Appendix A.

Table 2 summarizes field measurements of groundwater temperature, pH, SC, DO, TDS, ORP, and turbidity in the monitoring wells. Groundwater temperatures ranged from 22.22 to 27.01 degrees Centigrade (°C). Groundwater pH in shallow groundwater wells ranged from 6.48 to 6.91. Groundwater SC in shallow groundwater wells ranged from 2.96 to 3.62 microSiemens per centimeter (μS/cm). Field measurements of DO concentration in the groundwater are used to monitor the extent of natural attenuation occurring within the aquifer. DO concentrations below 0.5 milligrams per liter (mg/L) are considered characteristic of anaerobic conditions (Wiedemeier et al, 1998). DO concentrations during this sampling event in shallow groundwater wells ranged from 2.56 to 6.96 mg/L. ORP values for shallow wells ranged from -321 to 595 millivolts (mV). TDS concentrations during this sampling event in shallow groundwater wells ranged from 1.3 to 3.1 grams per liter (g/L).

The Nevada Drinking Water Standards Maximum Contaminant Level (MCL) for PCE in groundwater is 5 micrograms per liter (μ g/L). Analytical results for groundwater collected during this sampling event from shallow wells MW-1, MW-2, MW-5, MW-6, MW-13, MW-14, MW-17 through MW-21, MW-23, MW-25, and MW-27 exceeded the PCE MCL. Table 3 summarizes the

analytical data for PCE detected in the wells. Figures 4A and 4B show the PCE concentrations vs. time in the shallow and intermediate wells, respectively. The highest concentration of PCE detected this quarter was 3,500 µg/L in shallow well MW-14. Well MW-14 is located down gradient from the site on the Boulevard Mall property near the northwest corner of the front parking garage. PCE was not detected in shallow wells MW-16, and MW-22. PCE was detected in quantities below the PCE MCL in shallow wells MW-3, MW-7, MW-8, MW-10, MW-12, MW-15, and MW-24. The PCE concentration in well MW-27, which is the furthest downgradient well at the site, was 380 µg/L. Figure 5 shows the monitoring well locations, respective PCE concentrations for selected shallow wells, and the estimated PCE plume area for the shallow aquifer for this current sampling event.

Trichloroethene (TCE), cis-1, 2-dichloroethene, and vinyl chloride, degradation compounds of PCE, were detected in groundwater from MW-6 this sampling event. TCE, cis-1,2-dichloroethene, and vinyl chloride are respectively first, second, and third order reductive dechlorination (anaerobic conditions) degradation compound of PCE. Based on prior groundwater analytical results, TCE has been detected in low concentrations in wells MW-2, MW-6, and MW-22 in prior sampling events.

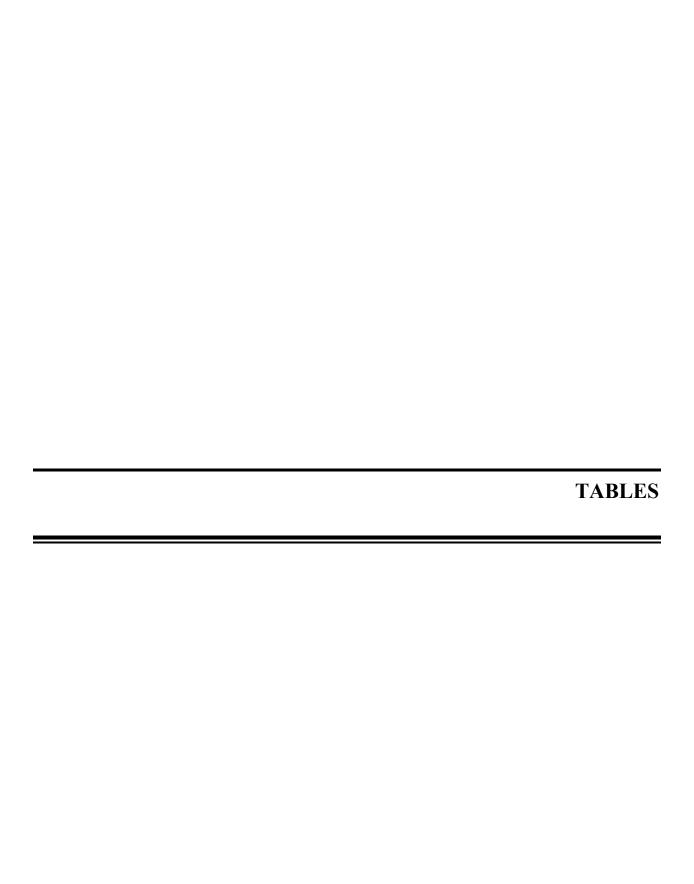
Table 4 summarizes the results of laboratory testing for ionic compounds for the 4th Quarter 2006 sampling event. This is the seventh sampling event during which these parameters have been monitored. As listed on the Chain of Custody (Appendix) a sample was submitted for MW-1 to measure alkalinity, nitrate, sulfate, and chloride. URS is currently investigating why this sample was not analyzed. Iron concentrations ranged from 2.6 to 20.0 mg/L and manganese concentrations ranged from 0.0074 to 0.24 mg/L. The anions (chloride, nitrate, and sulfate) ranged from 180 to 210 mg/L, 5.2 to 8.4 mg/L and 1,700 to 1,900 mg/L, respectively. Total alkalinity laboratory concentrations ranged from 210 to 280 mg/L. Total organic carbon (TOC) concentrations ranged from 1.7 to 2.8 mg/L.

4.1 GROUNDWATER SAMPLING CONCLUSIONS

In general, historical laboratory analytical data indicates that PCE concentration levels in monitoring wells have fluctuated over time, dating back to the first analysis by Converse in August 2000. PCE concentrations increased in twelve of the 25 monitoring wells samples this quarter compared to that detected in October 2006. The PCE concentration in the most easterly down gradient well MW-27 (installed in March 2006) remained at 380 μ g/L since October 2006.

Based on the groundwater monitoring and analytical results obtained during the last three sampling events, it appears that the PCE groundwater plume is approximately 550 feet wide beneath the Mall and a minimum of 3,300 feet long. The groundwater plume is relatively narrow and may follow an old paleochannel within the alluvial sediments of the valley.

4.2 REMEDIAL EFFORTS AND ASSESSMENTS


Maryland Square LLC (MS), owner of the former Maryland Square Shopping Center site, proceeded with demolition of the buildings at the site in July 2006. According to MS' property management firm, CB Richard Ellis, plans for development of the property have not been selected. Ongoing discussions with MS could change the proposed plans for installations of an AS remedial system.

Al Phillips will focus future remedial efforts on the PCE source area. A source removal Corrective Action Plan was submitted to NDEP in early December 2006 and additional soil investigations will be performed in the source area during January 2007. In addition, a soil remediation method for the source area will be purposed and finalized during the first quarter 2007 followed by implementation of the selected remedial method. An off-site soil vapor survey will be conducted during January 2007 on the east side of the Mall property and in the residential area east of the Mall. This data will be provided to NDEP for evaluation.

- Converse Consultants, 2000. Offsite Investigation, Maryland Square Shopping Center, Las Vegas, NV dated November 28, 2000.
- ----, 2001. A through K Data Research Report, dated August 22, 2001.
- ----, 2002a. Work Plan Additional Site Investigation, dated January 11, 2002.
- ----, 2002b. Additional Soil and Groundwater Investigation, dated November 13, 2002.
- ----, 2003a. Additional Soil and Groundwater Investigation, dated May 16, 2003.
- ----, 2003b. Preliminary Corrective Action Plan (CAP), dated June 27, 2003.
- ----, 2003c. Work Plan Additional Site Activities, dated September 12, 2003.
- ----, 2003d. Groundwater Monitoring Report 3rd Quarter 2003, dated October 31, 2003.
- ----, 2004. Well Installation/Slug Testing/Groundwater Monitoring Report 4th Quarter 2003 and 1st Quarter 2004, dated March 2004.
- SECOR International Incorporated, 2004. Preliminary Well Assessment, Monitoring Well MW-11, West of Dillard's Boulevard Mall Property, Las Vegas, NV, dated March 29, 2004.
- URS, 2004. Revised Work Plan, Proposed Subsurface Investigation, Former Al Phillips the Cleaner Site, Maryland Square Shopping Center, Las Vegas, NV, dated September 10, 2004.
- URS, 2005. Subsurface Investigation, Former Al Phillips the Cleaner Site, Maryland Square Shopping Center, Las Vegas, NV, dated July 11, 2005.
- URS, 2005. Quarterly Groundwater Sampling, Former Al Phillips the Cleaner Site, Maryland Square Shopping Center, Las Vegas, NV, dated September 26, 2005.
- URS, 2005. Proposed Remedial Pilot Study, Former Al Phillips the Cleaner Site, Maryland Square Shopping Center, Las Vegas, NV, dated December 27, 2005.
- URS, 2006. Quarterly Groundwater Sampling, Former Al Phillips the Cleaner Site, Maryland Square Shopping Center, Las Vegas, NV, dated February 6, 2006.
- URS, 2006. Quarterly Groundwater Sampling, Former Al Phillips the Cleaner Site, Maryland Square Shopping Center, Las Vegas, NV, dated April 25, 2006.
- URS, 2006. Quarterly Groundwater Sampling, June 2006, Al Phillips the Cleaner, Maryland Square Shopping Center, 3661 South Maryland Parkway, Las Vegas, NV. July 31, 2006.

URS, 2006. Quarterly Groundwater Sampling, 3rd Quarter 2006, Al Phillips the Cleaner, Maryland Square Shopping Center, 3661 South Maryland Parkway, Las Vegas, NV. November 14, 2006.

Wiedemeier, T. H., et al. 1998. Technical protocol for evaluating natural attenuation of chlorinated solvents in ground water. U.S. Environmental Protection Agency, Office of Research and Development, Publication U.S. EPA/600/R-98/128.

1

TABLE 1 SUMMARY OF WELL CHARACTERISTICS AND GROUNDWATER ELEVATIONS Maryland Square Shopping Center

Well ID	Install	Top of Casing	Screen	Sample	GROUNDWATER DEPT	TH/ELEVATION DATA
Well ID	Date	(Elevation)	Depth (in ft)	Date	Depth to Water	Elevation
			` ′		(in ft.)	(in ft.)
			SHALI	LOW WE		
		1,991.81		Oct 00	17.54	1974.27
				Sep 02	17.90	1974.14
				May 03	18.70	1973.34
				Sept 03	18.97	1973.07
				Jan 04	19.30	1972.74
MW-1	Aug-00	4 000 04	10-30	May 05	15.24	1976.80
		1,992.04		Sept 05	16.74	1975.30
				Dec 05	17.61	1974.43
				Mar 06	18.42	1973.62
				Jun 06	NM	NM
				Oct 06	18.30	1973.74
		4 002 50		Dec 06	18.88	1973.16
		1,983.79		Oct 00	15.52	1968.27
		1,983.99		Sep 02	16.62	1967.37
	Oct-00			May 03	17.15	1966.84
				Sept 03	17.70	1966.27
34337.2		1,983.97	10.22	Jan 04	18.25	1965.72
MW-2			10-32	May 05	14.65	1969.32
				Dec 05	16.00	1967.97
				Mar 06	NM	NM
				Jun 06	17.55	1966.42
				Oct 06	17.25	1966.72
		1 004 10		Dec 06	17.6	1966.37
		1,984.19		Oct 00	15.95 17.20	1968.24
		1,984.46		Sep 02 May 03	17.70	1967.26
					18.35	1966.76
				Sept 03 Jan 04	19.25	1966.08 1965.18
MW-3	Oct-00		10-32	May 05	15.22	1969.21
IVI VV -3	001-00		10-32	Dec 05	16.45	1967.98
		1,984.43		Mar 06	NM	NM
				Jun 06	18.38	1966.05
				Oct 06	17.88	1966.55
				Dec 06	18.26	1966.17
		1,989.68		Oct 00	16.95	1972.73
		ŕ		Sep 02	NM	NM
		1,989.87		May 03	18.71	1971.16
				Sept 03	19.05	1970.80
	Oct-00			Jan 04	19.86	1969.99
MW-4			10-32	May 05	15.83	1974.02
111 11 -1		1,989.85	10 32	Dec 05	17.62	1972.23
				Mar 06	NM	NM
				Jun 06	18.36	1971.49
			-	Oct 06	18.34	1971.51
				Dec 06	NM	NM

TABLE 1
SUMMARY OF WELL CHARACTERISTICS AND GROUNDWATER ELEVATIONS
Maryland Square Shopping Center

W/ H-IF	Install	Top of Casing	Screen	Sample	GROUNDWATER DEI	PTH/ELEVATION DATA
Well ID	Date	(Elevation)	Depth (in ft)	Date	Depth to Water	Elevation
			(III It)		(in ft.)	(in ft.)
		1,988.93		Oct 00	16.20	1972.73
				Sep 02	17.00	1972.18
				May 03	17.80	1971.38
				Oct 06	17.46	1971.72
				Sept 03	18.07	1971.11
MW-5	Oct-00	1 000 10	10-32	Jan 04	18.65	1970.53
		1,989.18		May 05	14.87	1974.31
				Dec 05 Mar 06	16.80 NM	1972.38 NM
				Jun 06	17.40	1971.78
				Oct 06	17.46	1971.78
				Dec 06	18.01	1971.17
		1,988.72		Oct 00	17.41	1971.31
		1,700.72		Sep 02	18.26	1970.75
				May 03	18.87	1970.14
				Sept 03	19.25	1969.76
				Jan 04	19.74	1969.27
MW-6	Oct-00		10-32	May 05	16.21	1972.80
IVI VV -0	001-00	1,989.01	10-32	Sept 05	17.26	1971.75
				Dec 05	17.88	1971.13
				Mar 06	NM	NM
				Jun 06	18.80	1970.21
				Oct 06	18.73	1970.28
				Dec 06	19.18	1969.83
		1,990.28		Sep 02	18.27	1972.01
			10-30	May 03	16.60	1973.68
		1,990.25		Sept 03	16.79	1973.46
				Jan 04	17.32	1972.93
MW-7	Sep 02			May 05 Sept 05	13.86 14.97	1976.39 1975.28
IVI VV - /	3cp 02			Dec 05	15.45	1973.28
		1,770.23		Mar 06	16.41	1973.84
				Jun 06	16.50	1973.75
				Oct 06	16.50	1973.75
				Dec 06	16.87	1973.78
		1.004.25		Sep 02	18.55	1975.70
		1,994.25		May 03	19.50	1974.75
				Sept 03	19.55	1974.68
				Jan 04	19.91	1974.32
MW-8	Sep 02		10-30	May 05	15.51	1978.72
IVI VV -0	3cp 02	1,994.23	10-30	Dec 05	18.48	1975.75
		1,771.23		Mar 06	NM	NM
				Jun 06	18.89	1975.34
				Oct 06	19.12	1975.11
<u> </u>				Dec 06	19.60	1974.63
		1,983.81		Sep 02	18.51	1965.30
			}	May 03 Sept 03	18.65	1965.16
				Jan 04	19.45 20.32	1964.35 1963.48
	Sep 02			May 05	16.76	1963.48
MW-10			10-30	Sept 05	16.95	1966.85
		1,983.80	10 30	Dec 05	17.64	1966.16
		,		Mar 06	19.25	1964.55
				Jun 06	17.90	1965.90
				Oct 06	19.00	1964.80
				Dec 06	19.21	1964.59

TABLE 1
SUMMARY OF WELL CHARACTERISTICS AND GROUNDWATER ELEVATIONS
Maryland Square Shopping Center

			Sample	GROUNDWATER DEP	TH/ELEVATION DATA	
Well ID	Date	(Elevation)	Depth (in ft)	Date	Depth to Water (in ft.)	Elevation (in ft.)
				Sep 02	24.22	1956.02
				May 03	24.25	1955.99
				Sept 03	25.62	1954.62
				Jan 04	26.22	1954.02
MW-11	Sep 02	1,980.24	13.5-33.5	May 05	22.55	1957.69
				Mar 06	NM	NM
				Jun 06	NM	NM
				Oct 06	NM	NM
				Dec 06	NM	NM
		1,996.59		Sep 02	14.90	1981.69
		-,,,,,,,,,	<u> </u>	May 03	15.07	1981.52
				Sept 03	15.30	1981.20
				Jan 04	15.40	1981.10
	G 02		12.5.22.5	May 05	12.34	1984.16
MW-12	Sep 02	1.006.50	13.5-33.5		13.45	1983.05
		1,996.50		Dec 05	14.20	1982.30
				Mar 06	15.00	1981.50
				Jun 06 Oct 06	NM 14.71	NM 1981.79
				Dec 06	15.05	1981.45
		1,984.23		May 03	17.25	1966.98
		1,964.23	1	Sept 03	17.60	1966.60
				Jan 04	18.00	1966.20
			9-29	May 05	14.76	1969.44
				Sept 05	15.60	1968.60
MW-13	May-03	1,984.20		Dec 05	16.05	1968.15
		,		Mar 06	17.24	1966.96
				Jun 06	17.40	1966.80
				Oct 06	17.15	1967.05
				Dec 06	17.47	1966.73
				Jan 04	18.35	1969.54
				May 05	15.02	1972.87
				Dec 05	16.50	1971.39
MW-14	Nov-03	1,987.89	15-40	Mar 06	17.54	1970.35
				Jun 06	17.61	1970.28
				Oct 06	17.42	1970.47
				Dec 06	17.78	1970.11
				Jan 04	15.60	1967.68
				May 05	12.59	1970.69 1969.83
				Sept 05 Dec 05	13.45 13.77	1969.51
MW-15	Nov-03	1,983.28	15-32	Mar 06	15.00	1968.28
				Jun 06	15.15	1968.13
				Oct 06	14.91	1968.37
				Dec 06	15.17	1968.11
				Jan 04	26.22	1954.41
				May 05	23.41	1957.22
				Sept 05	24.12	1956.51
MW 14	Nov. 02	1,980.63	19-32	Dec 05	24.21	1956.42
MW-16	Nov-03	1,980.03	19-32	Mar 06	25.06	1955.57
				Jun 06	26.05	1954.58
				Oct 06	25.67	1954.96
				Dec 06	25.56	1955.07
				May 05	15.07	1975.85
				Dec 05	17.05	1973.87
MW-17	Apr-05	1,990.92	15-20	Mar 06	NM	NM
(4-inch)	1	,		Jun 06	NM	NM
				Oct 06	17.91	1973.01
			ļ	Dec 06	18.41	1972.51

TABLE 1
SUMMARY OF WELL CHARACTERISTICS AND GROUNDWATER ELEVATIONS
Maryland Square Shopping Center

	Install	Top of Casing	Screen	Sample	GROUNDWATER DEP	GROUNDWATER DEPTH/ELEVATION DAT		
Well ID	Date	(Elevation)	Depth (in ft)	Date	Depth to Water (in ft.)	Elevation (in ft.)		
				May 05	8.71	1954.16		
				Sept 05	9.69	1953.18		
MW-18				Dec 05	9.70	1953.17		
(4-inch)	Apr-05	1,962.87	15-20	Mar 06	10.21	1952.66		
(4-111011)				Jun 06	11.64	1951.23		
				Oct 06	11.21	1951.66		
				Dec 06	10.98	1951.89		
				Jan 04	25.65	1954.61		
				May 05 Dec 05	22.70 23.65	1957.56 1956.61		
MW-19	Nov-03	1,980.26	19-35	Mar 06	NM	NM		
141 44-17	1404-03	1,760.20	17-33	Jun 06	25.55	1954.71		
				Oct 06	25.23	1955.03		
				Dec 06	25.01	1955.25		
				Jan 04	25.50	1954.49		
				May 05	22.58	1957.41		
				Dec 05	23.55	1956.44		
MW-20	Nov-03	1,979.99	19-35	Mar 06	NM	NM		
				Jun 06	25.48	1954.51		
				Oct 06	25.04	1954.95		
				Dec 06	24.85	1955.14		
				Jan 04	24.72	1954.84		
				May 05	21.76	1957.80		
				Sept 05	22.70	1956.86		
MW-21	Nov-03	1,979.56	19-35	Dec 05	22.85	1956.71		
				Mar 06	23.46	1956.10		
				Jun 06	24.68 24.35	1954.88 1955.21		
				Oct 06 Dec 06	24.33	1955.41		
				May 05	23.04	1951.72		
				Sept 05	24.18	1950.58		
				Dec 05	24.30	1950.46		
MW-22	Apr-05	1,974.76	15-20	Mar 06	24.68	1950.08		
(4-inch)	1	,		Jun 06	25.91	1948.85		
				Oct 06	25.79	1948.97		
				Dec 06	25.49	1949.27		
				May 05	13.06	1949.26		
				Dec 05	14.05	1948.27		
MW-23	Apr-05	1,962.32	15-20	Mar 06	NM	NM		
(4-inch)	pr oc	1,702.32	10 20	Jun 06	15.60	1946.72		
				Oct 06	15.48	1946.84		
				Dec 06	15.16	1947.16		
				May 05	10.72	1950.02		
				Sept 05 Dec 05	11.75 11.65	1948.99 1949.09		
MW-24	Apr-05	1,960.74	15-20	Mar 06	12.10	1949.09		
(4-inch)	71pi-03	1,700.74	13-20	Jun 06	13.16	1947.58		
				Oct 06	13.06	1947.68		
				Dec 06	12.80	1947.94		
				May 05	16.01	1944.73		
				Sept 05	17.45	1943.29		
MW 25				Dec 05	16.85	1943.89		
MW-25	Apr-05	1,960.74	15-20	Mar 06	17.30	1943.44		
(4-inch)				Jun 06	18.64	1942.10		
				Oct 06	18.75	1941.99		
				Dec 06	18.61	1942.13		
				Mar 06	15.60			
MW-26	Mar-06	*	10-35	Jun 06	17.00			
(4-inch)				Oct 06	17.17			
				Dec 06	NM			

TABLE 1 SUMMARY OF WELL CHARACTERISTICS AND GROUNDWATER ELEVATIONS Maryland Square Shopping Center

W. II ID	Install	Top of Casing	Screen	Sample	GROUNDWATER DEPTH/ELEVATION DATA		
Well ID	Date	(Elevation)	Depth (in ft)	Mar 06 Jun 06 Oct 06 Dec 06 IEDIATE WELL Sep 02 May 03	Depth to Water (in ft.)	Elevation (in ft.)	
					13.48		
MW-27	Mar-06	*	10-35		18.50		
(4-inch)			10 30	Oct 06	16.16		
				Dec 06	13.85		
			INTERM	EDIATE	WELL		
		1,992.26		Sep 02	18.46	1973.80	
		1,772.20	1	May 03	19.15	1973.11	
				Sept 03	19.02	1973.24	
				Jan 04	19.05	1973.21	
			48.5-50	May 05	15.36	1976.90	
MW-9	Sep-02			Sept 05	17.85	1974.41	
		1,992.26		Dec 05	17.68	1974.58	
				Mar-06	18.55	1973.71	
				Jun-06	NM	NM	
				Oct 06	18.40	1973.86	
				Dec 06	19.00	1973.26	

NOTES: All measurements are in feet. Top of casing elevation is in feet above mean sea level.

All wells are 2-inch diameter PVC casing and screen, unless indicated.

All wells installed prior to September 2003 were resurveyed in September of 2003.

NM = 'not measured'; * =Mar 2006 installed wells to be surveyed 1st Quarter 2007

TABLE 2
SUMMARY OF FIELD WATER QUALITY MEASUREMENTS IN MONITORING WELLS
Maryland Square Shopping Center

Well ID	Sample Date	pН	Temperatur e (°C)	Specific Conductance (mS/cm)	Dissolved Oxygen (mg/L)	Oxidation- Reduction Potential (mV)	Turbidity (ntu)	TDS (g/L)
			Sl	HALLOW WE	LLS			
	Jan-04	6.97	22.50	3.48	0.93	NM	NM	NM
	May-05	7.02	26.04	3.98	5.43	110	441	NM
	Sep-05	7.08	27.50	4.16	6.99	129	64	2.7
MW-1	Dec-05	6.98	26.90	5.10	2.01	404	290	3.2
141 44 - 1	Mar-06	**	23.10	5.62	**	545	>999	3.7
	Jun-06	NM	NM	NM	NM	NM	NM	NM
	Oct-06	6.32	26.74	3.71	4.61	129	81	2.4
	Dec-06	6.74	26.86	4.44	5.12	111	>999	2.8
	Jan-04	7.05	23.20	3.10	1.13	NM	NM	NM
	May-05	6.93	23.40	3.47	4.82	193	698	NM
	Dec-05	6.63	25.40	4.82	2.67	264	360	3.1
MW-2	Mar-06	NM	NM	NM	NM	NM	NM	NM
	Jun-06	**	24.90	3.70	6.98	116	728	2.4
	Oct-06	6.12	24.41	3.48	5.11	161	20	2.2
	Dec-06	6.78	24.53	4.19	4.94	241	28.4	2.7
	Jan-04	6.87	22.40	2.91	0.97	NM	NM	NM
	May-05	6.99	26.00	2.88	2.54	149	**	NM
	Dec-05	6.55	27.30	4.69	0.88	33	100	3.0
MW-3	Mar-06	NM	NM	NM	NM	NM	NM	NM
	Jun-06	**	26.40	3.76	5.61	-32	285	2.4
	Oct-06	5.91	26.71	3.90	2.04	279	26.2	2.5
	Dec-06	6.69	26.74	4.8	2.89	9	272	3.1
	Jan-04	6.95	22.00	2.71	1.23	NM	NM	NM
	May-05	6.83	24.20	3.73	3.68	160	664	NM
	Dec-05	6.68	25.90	4.90	3.22	219	670	3.1
MW-4	Mar-06	NM ⁽¹⁾	NM ⁽¹⁾	NM ⁽¹⁾	NM ⁽¹⁾	NM ⁽¹⁾	NM ⁽¹⁾	NM ⁽¹⁾
	Jun-06	NM ⁽¹⁾	NM ⁽¹⁾	NM ⁽¹⁾	NM ⁽¹⁾	NM ⁽¹⁾	NM ⁽¹⁾	NM ⁽¹⁾
	Oct-06	NM ⁽¹⁾	NM ⁽¹⁾	NM ⁽¹⁾	NM ⁽¹⁾	NM ⁽¹⁾	NM ⁽¹⁾	NM ⁽¹⁾
	Dec-06	NM ⁽¹⁾	NM ⁽¹⁾	NM ⁽¹⁾	NM ⁽¹⁾	NM ⁽¹⁾	NM ⁽¹⁾	NM ⁽¹⁾
	Jan-04	6.72	22.30	2.61	1.20	NM	NM	NM
	May-05	7.09	25.40	2.59	4.56	184	**	NM
	Dec-05	6.78	26.80	5.28	1.51	377	>999	3.3
MW-5	Mar-06	NM	NM	NM	NM	NM	NM	NM
	Jun-06	**	26.60	3.80	6.93	126	>999	2.4
	Oct-06	6.23	26.68	3.51	4.82	99	21.3	2.2
	Dec-06	6.81	26.46	4.49	5.36	93	134	2.9

TABLE 2
SUMMARY OF FIELD WATER QUALITY MEASUREMENTS IN MONITORING WELLS
Maryland Square Shopping Center

Well ID	Sample Date	рН	Temperatur e (°C)	Specific Conductance (mS/cm)	Dissolved Oxygen (mg/L)	Oxidation- Reduction Potential (mV)	Turbidity (ntu)	TDS (g/L)
	Jan-04	6.97	22.40	2.31	1.19	NM	NM	NM
	May-05	6.91	25.90	2.35	2.81	123	**	NM
	Sep-05	6.99	26.90	3.95	6.23	-119	34	2.3
MW-6	Dec-05	6.80	26.50	4.86	1.10	163	220	3.2
171 77 -0	Mar-06	NM	NM	NM	NM	NM	NM	NM
	Jun-06	**	26.70	4.00	6.34	172	707	2.4
	Oct-06	6.27	26.47	3.55	4.12	61	6.5	2.3
	Dec-06	6.69	26.22	4.23	4.37	239	96.1	2.7
	Jan-04	7.00	22.40	2.23	0.93	NM	NM	NM
	May-05	7.10	24.79	1.79	4.03	129	**	NM
	Sep-05	6.97	26.60	4.62	6.22	144	140	3.0
N4337 7	Dec-05	6.67	23.80	5.33	1.80	472	5	3.4
MW-7	Mar-06	4.67	22.40	6.71	**	634	428	4.2
	Jun-06	**	26.20	4.12	6.58	-14	>999	2.6
	Oct-06	6.24	25.03	3.68	4.41	92	>999	2.3
	Dec-06	6.86	25.11	4.8	5.72	65	>999	3.0
	Jan-04	6.99	22.00	2.16	1.04	NM	NM	NM
	May-05	7.03	27.70	1.75	3.64	107	**	NM
	Dec-05	6.68	24.10	4.24	2.08	483	>999	2.7
MW-8	Mar-06	NM	NM	NM	NM	NM	NM	NM
	Jun-06	**	27.40	3.66	6.92	185	>999	2.3
	Oct-06	6.24	26.73	3.44	5.86	108	>999	2.2
	Dec-06	6.91	27.01	4.27	6.96	103	>999	2.7
	Jan-04	7.00	24.40	3.13	1.03	NM	NM	NM
	May-05	6.82	28.10	3.20	1.46	-253	25.3	NM
	Sep-05	6.96	27.90	2.90	3.89	-239	28	1.9
N 5337 4 0	Dec-05	6.69	23.90	3.66	1.47	-140	57	2.3
MW-10	Mar-06	5.73	21.30	1.77	**	-154	153	1.2
	Jun-06	**	28.10	2.10	3.54	-303	>999	1.5
	Oct-06	6.16	27.11	1.37	1.58	-272	86	0.9
	Dec-06	6.82	26.58	3.9	3.94	-321	144	2.5
	Jan-04	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾
	May-05	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾
MXX7 11	Mar-06	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾
MW-11	Jun-06	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾
	Oct-06	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾
	Dec-06	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾
	Jan-04	6.99	22.40	2.15	NM	NM	NM	NM
	May-05	6.76	24.90	2.58	3.22	219	**	NM
	Sep-05	7.03	25.60	4.22	4.96	95	160	2.7
3.6337.40	Dec-05	6.68	22.50	4.98	2.00	523	210	3.2
MW-12	Mar-06	**	23.50	6.65	**	503	90.8	4.2
	Jun-06	NM	NM	NM	NM	NM	NM	NM
	Oct-06	6.32	26.13	3.94	3.88	112	>999	2.5
	Dec-06	6.61	25.25	4.38	6.15	206	>999	2.8

TABLE 2
SUMMARY OF FIELD WATER QUALITY MEASUREMENTS IN MONITORING WELLS
Maryland Square Shopping Center

Well ID	Sample Date	рН	Temperatur e (°C)	Specific Conductance (mS/cm)	Dissolved Oxygen (mg/L)	Oxidation- Reduction Potential (mV)	Turbidity (ntu)	TDS (g/L)
	Jan-04	6.61	22.20	3.29	1.07	NM	NM	NM
	May-05	6.97	24.50	2.06	4.16	118	>999	NM
	Sep-05	7.07	25.40	3.95	6.85	144	270	2.5
MW 12	Dec-05	6.70	24.90	5.03	2.19	250	330	3.2
MW-13	Mar-06	5.45	22.80	3.64	**	68	44.1	2.3
	Jun-06	**	24.20	3.72	7.11	120	425	2.4
	Oct-06	6.16	24.64	3.63	3.84	169	49.5	2.3
	Dec-06	6.75	24.53	4.25	4.17	330	93.6	2.7
	Jan-04	6.99	22.30	2.27	1.30	NM	NM	NM
	May-05	6.95	24.70	3.23	NM	140	NM	NM
	Dec-05	6.78	26.10	5.31	2.07	206	>999	3.3
MW-14	Mar-06	5.23	24.20	6.76	**	234	898	4.3
	Jun-06	**	25.40	3.93	6.75	119	>999	2.5
	Oct-06	6.06	24.76	3.55	6.96	297	>999	2.3
	Dec-06	6.76	25.65	4.5	4.18	226	350	2.9
	Jan-04	6.35	22.40	2.20	1.00	NM	NM	NM
	May-05	6.99	25.06	2.33	2.85	164	**	NM
	Sep-05	6.97	25.80	3.57	3.48	-24	36	2.3
3.6337.45	Dec-05	6.58	25.90	4.45	1.03	-38	140	2.8
MW-15	Mar-06	4.70	23.90	6.40	**	613	19.5	4.0
	Jun-06	**	26.00	3.84	4.26	106	300	2.5
	Oct-06	6.17	25.72	3.66	2.01	51	10	2.3
	Dec-06	6.78	25.85	4.68	3.44	28	15.4	3.0
	Jan-04	6.97	22.40	2.31	0.68	NM	NM	NM
	May-05	7.12	25.20	2.88	1.10	-4	**	NM
	Sep-05	7.00	24.60	3.42	3.50	-31	520	2.3
MW 16	Dec-05	6.74	25.30	3.76	1.30	48	>999	2.4
MW-16	Mar-06	5.15	23.80	5.74	**	162	199	3.6
	Jun-06	**	27.10	3.44	5.56	-64	>999	2.2
	Oct-06	6.25	24.60	3.39	2.00	-145	31.5	2.2
	Dec-06	6.52	24.39	3.62	2.87	-52	271	1.3
	May-05	6.92	24.10	3.49	5.94	181	21.7	NM
	Dec-05	6.90	26.80	4.65	2.30	240	6	3.0
MXX 15±	Mar-06	NM	NM	NM	NM	NM	NM	NM
MW-17*	Jun-06	NM	NM	NM	NM	NM	NM	NM
	Oct-06	6.22	24.91	3.45	7.36	174	1.8	2.2
	Dec-06	6.86	24.08	4.14	6.81	386	24.7	2.7
	May-05	7.10	24.30	3.86	5.56	139	>999	NM
	Sep-05	7.10	26.30	4.12	6.21	88	3	2.6
	Dec-05	6.79	25.20	4.73	1.98	420	**	3.0
MW-18*	Mar-06	5.17	23.30	6.21	**	237	3.1	3.9
	Jun-06	**	25.40	3.61	6.18	166	304	2.3
	Oct-06	6.30	25.54	3.47	4.06	127	0	2.2
	Dec-06	6.8	24.69	4.16	4.3	297	0	2.7

TABLE 2
SUMMARY OF FIELD WATER QUALITY MEASUREMENTS IN MONITORING WELLS
Maryland Square Shopping Center

Well ID	Sample Date	pН	Temperatur e (°C)	Specific Conductance (mS/cm)	Dissolved Oxygen (mg/L)	Oxidation- Reduction Potential (mV)	Turbidity (ntu)	TDS (g/L)
	Jan-04	6.99	22.40	1.90	1.02	NM	NM	NM
	May-05	7.13	25.03	1.86	5.76	130	**	NM
	Dec-05	6.64	24.70	4.74	1.95	388	**	3.0
MW-19	Mar-06	NM	NM	NM	NM	NM	NM	NM
	Jun-06	**	27.10	3.69	7.86	86	>999	2.4
	Oct-06	6.10	23.91	3.69	4.60	175	>999	2.4
	Dec-06	6.8	23.91	4.38	5.7	595	>999	2.8
	Jan-04	6.94	22.60	2.07	1.11	NM	NM	NM
	May-05	7.16	23.56	1.32	4.97	131	**	NM
	Dec-05	6.76	20.50	4.37	0.77	272	**	2.8
MW-20	Mar-06	NM	NM	NM	NM	NM	NM	NM
	Jun-06	**	28.60	3.82	6.91	70	736	2.1
	Oct-06	6.13	23.66	2.63	4.11	234	>999	1.8
	Dec-06	6.79	23.86	4.11	4.34	245	284	2.6
	Jan-04	6.91	22.30	2.04	1.08	NM	NM	NM
	May-05	7.07	24.59	2.82	2.88	131	**	NM
	Sep-05	7.06	25.80	4.66	4.07	109	39	2.6
MW-21	Dec-05	6.64	24.30	4.60	0.54	264	>999	2.9
171 77 -21	Mar-06	5.52	23.00	3.58	**	309	140	2.3
	Jun-06	**	28.50	3.50	4.73	112	>999	2.3
	Oct-06	6.24	24.11	3.46	1.99	79	>999	2.2
	Dec-06	6.74	24.02	4.48	2.72	89	617	2.9
	May-05	6.79	24.14	3.89	1.68	46	474	NM
	Sep-05	6.90	23.90	4.25	7.16	46	10	2.7
	Dec-05	6.42	24.60	4.20	1.31	213	**	2.7
MW-22*	Mar-06	4.79	24.00	6.09	**	269	30	3.8
	Jun-06	**	26.40	3.39	5.96	376	287	2.2
	Oct-06	5.98	23.79	3.74	2.43	141	11.4	2.4
	Dec-06	6.48	23.5	4.48	3.52	477	0	2.9
	May-05	7.00	24.50	3.63	2.56	121	**	NM
	Dec-05	6.71	24.90	4.91	2.13	320	**	3.1
MW-23*	Mar-06	NM	NM	NM	NM	NM	NM	NM
111,1,120	Jun-06	**	23.80	3.68	5.77	238	318	2.3
	Oct-06	6.27	23.95	3.50	2.51	107	0	2.2
	Dec-06	6.79	24.15	4.21	3.2	2	0	2.7
	May-05	6.97	23.09	3.56	1.48	76	>999	NM
	Sep-05	7.00	25.80	3.83	3.62	5	25	2.4
	Dec-05	6.56	25.60	4.46	1.04	183	29	2.7
MW-24*	Mar-06	4.70	22.60	6.02	**	503	0.8	3.8
	Jun-06	**	25.10	3.44	5.11	132	201	2.2
	Oct-06	6.17	25.51	3.20	1.22	-23	0	2.0
	Dec-06	6.85	25.11	4.13	2.56	62	0	2.6

TABLE 2 SUMMARY OF FIELD WATER QUALITY MEASUREMENTS IN MONITORING WELLS Maryland Square Shopping Center

Well ID	Sample Date	рН	Temperatur e (°C)	Specific Conductance (mS/cm)	Dissolved Oxygen (mg/L)	Oxidation- Reduction Potential (mV)	Turbidity (ntu)	TDS (g/L)
	May-05	7.03	23.60	4.00	4.34	141	>999	NM
	Sep-05	7.01	26.20	4.18	5.10	57	30	2.7
	Dec-05	6.63	24.70	5.28	1.35	417	0	3.3
MW-25*	Mar-06	5.15	23.60	6.67	**	255	94	4.2
	Jun-06	**	23.50	3.93	5.74	376	228	2.5
	Oct-06	6.23	23.59	3.72	3.08	106	0	2.4
	Dec-06	6.74	23.93	4.45	3.75	429	0	2.8
	Mar-06	6.83	23.80	3.75	2.59	158	0	2.4
MW-26	Jun-06	**	24.10	2.32	4.83	305	229	1.5
N1 W -20	Oct-06	6.18	23.71	3.72	2.91	180	0	2.4
	Dec-06	NM ⁽³⁾	NM ⁽³⁾	NM ⁽³⁾	NM ⁽³⁾	NM ⁽³⁾	NM ⁽³⁾	NM ⁽³⁾
	Mar-06	6.83	21.90	3.28	2.44	142	0	2.1
MW-27	Jun-06	**	26.10	3.67	4.57	69	626	2.3
141 44 -27	Oct-06	6.20	22.24	3.32	2.84	155	0	2.1
	Dec-06	6.81	22.22	4.02	4.48	444	507	2.6
Aver	rage	6.59	24.78	3.81	3.63	161	178	3
			INT	ERMEDIATE '	WELL			
	Jan-04	6.99	22.60	2.50	1.18	NM	NM	NM
	May-05	7.14	26.12	2.68	7.56	130	296	NM
	Sep-05	7.17	27.10	1.81	6.58	111	4	1.2
MW-9	Dec-05	6.88	26.60	2.45	2.49	123	33	1.6
141 44 -3	Mar-06	5.06	25.90	2.08	**	496	-1.1	1.3
	Jun-06	NM	NM	NM	NM	NM	NM	NM
	Oct-06	6.30	25.71	2.38	4.11	86	0	1.5
	Dec-06	6.81	25.46	2.96	5.09	233	0	1.9
Aver	age	6.62	25.64	2.41	4.50	197	55	1.5

NOTES:

^{* =} wells installed in Apr 2005. ** = instrument failure NM = Not Measured

^{(1) =} Monitoring Well MW-4 was not sampled due to blockage in well casing

^{(2) =} Monitoring Well MW-11 was not sampled due to detection of floating hydrocarbons in the well.

^{(3) =} Monitoring Well MW-26 was not sampled due to landscape rock covering well.

[°]C = degrees Celsius. uS = microsiemens (equivalent to umhos). mg/L = milligrams per liter

mV = millivolts. Ntu = Nephelometric Turbidity Units

	Sample	Co	oncentration (in ug/L)	
Well ID	Date	perchloroethylene (PCE)	trichloroethene (TCE)	cis-1,2-Dichlorethene
·	· ·	SHALLOW		•
	Aug 00	2,300	ND	ND
	Oct 00	NS	NS	NS
	Sep 02	2,000	ND	ND
	May 03	870	ND	ND
	Sep 03	2,300	ND	ND
	Nov 03	-	-	-
MXX/ 1	Jan 04	1,700	ND	ND
MW-1	May 05	3,500	ND	ND
	Sep 05	1,700	ND	ND
	Dec 05	820	ND	ND
	Mar 06	420	ND	ND
	Jun 06	NS	NS	NS
	Oct 06	1,100	ND	ND
	Dec 06	1,300	ND	ND
	Oct 00	3,000	18	18
_	Sep 02	3,000	13	13
_	May 03	1,400	ND	ND
_	Sep 03	1,700	ND	ND
_	Nov 03	-	-	-
	Jan 04	1,700	ND	ND
MW-2	May 05	2,050	17	9.7
	Dec 05	2,900	ND	ND
	Mar 06	NS	NS	NS
_	Jun 06	1,600	ND	ND
	Oct 06	1,900	ND	ND
_	Dec 06	1,300	ND	ND
	Oct 00	98	ND	ND
	Sep 02	ND	ND	ND
_	May 03	6.9	ND	ND
_	Sep 03	12	ND	ND
_	Nov 03	-	-	-
	Jan 04	6.7	ND	ND
MW-3	May 05	ND	ND	ND
	Dec 05	ND	ND	ND
	Mar 06	NS	NS	NS
	Jun 06	ND	ND	ND
	Oct 06	ND	ND	ND
	Dec 06	1.2	ND	ND
	Oct 00	14	ND	ND
	Sep 02	25	ND	ND
MW-4	May 03	24	ND	ND
	Sep 03	100	ND	ND
	Nov 03	-	-	-

TABLE 3
SELECTEDVOC CONCENTRATIONS IN MONITORING WELLS
Maryland Square Shopping Center

Well ID	Sample	Concentration (in ug/L)					
weii ib	Date	perchloroethylene (PCE)	trichloroethene (TCE)	cis-1,2-Dichlorethene			
	Jan 04	220	ND	ND			
	May 05	25	ND	ND			
	Dec 05	15	ND	ND			
MW-4	Mar 06	NS	NS	NS			
	Jun 06	27	ND	ND			
	Oct 06	NS ⁽¹⁾	NS ⁽¹⁾	NS ⁽¹⁾			
	Dec 06	NS ⁽¹⁾	NS ⁽¹⁾	NS ⁽¹⁾			
	Oct 00	100	ND	NS ⁽¹⁾			
	Sep 02	110	ND	ND			
	May 03	240	ND	ND			
	Sep 03	220	ND	ND			
	Nov 03	-	-	-			
MW-5	Jan 04	370	ND	ND			
W1 VV -3	May 05	146	ND	ND			
	Dec 05	93	ND	ND			
	Mar 06	NS	NS	NS			
	Jun 06	220	ND	ND			
	Oct 06	67	ND	ND			
	Dec 06	130	ND	ND			
	Oct 00	2,200	13	8.1			
	Sep 02	1,000	41	14			
	May 03	710	22	ND			
	Sep 03	1,300	ND	ND			
	Nov 03	-	-	-			
	Jan 04	2,400	ND	ND			
MW-6	May 05	2,090	13	11			
	Sep 05	890	13	23			
	Dec 05	530	41	21			
	Mar 06	NS	NS	NS			
	Jun 06	1,100	ND	ND			
	Oct 06	1,300	ND	ND			
	Dec 06	810	9.9	8.9			
	Sep 02	ND	ND	ND			
	May 03	1.7	ND	ND			
	Sep 03	2.0	ND	ND			
	Nov 03	-	-	-			
	Jan 04	11	ND	ND			
MW-7	May 05	ND	ND	ND			
141 44 - 1	Sep 05	3.3	ND	ND			
	Dec 05	1.2	ND	ND			
	Mar 06	1.5	ND	ND			
	Jun 06	2.2	ND	ND			
	Oct 06	2.9	ND	ND			
	Dec 06	2.1	ND	ND			

Wall ID	Sample	Concentration (in ug/L)				
Well ID	Date	perchloroethylene (PCE)	trichloroethene (TCE)	cis-1,2-Dichlorethene		
	Sep 02	5.4	ND	ND		
	May 03	3.2	ND	ND		
	Sep 03	3.7	ND	ND		
	Nov 03	<u>-</u>	-	-		
l .	Jan 04	4.7	ND	ND		
MW-8	May 05	5.6	5.6	ND		
	Dec 05	3.6	ND	ND		
l .	Mar 06	NS	NS	NS		
l .	Jun 06	2.6	ND	ND		
	Oct 06	3.4	ND	ND		
	Dec 06	4.3	ND	ND		
	Sep 02	ND	ND	ND		
	May 03	ND	ND	ND		
	Sep 03	15	ND	ND		
	Nov 03	-	-	-		
	Jan 04	ND	ND	ND		
MW-10	May 05	ND	ND	ND		
	Sep 05	ND	ND	ND		
	Dec 05	ND	ND	ND		
	Mar 06	ND	ND	ND		
	Jun 06	ND	ND	ND		
	Oct 06	ND	ND	ND		
	Dec 06	1.0	ND	ND		
	Sep 02	ND	ND	ND		
	May 03	ND (2)	ND (2)	ND		
	Sep 03	NS ⁽²⁾	NS ⁽²⁾	NS ⁽²⁾		
	Nov 03	NS ⁽²⁾	NS ⁽²⁾	NS ⁽²⁾		
	Jan 04	NS ⁽²⁾	NS ⁽²⁾	NS ⁽²⁾		
MW-11	May 05	$NS^{(2)}$	NS ⁽²⁾	NS ⁽²⁾		
	Dec 05	NS ⁽²⁾	NS ⁽²⁾	NS ⁽²⁾		
Ī	Mar 06	NS ⁽²⁾	NS ⁽²⁾	NS ⁽²⁾		
 	Jun 06	NS ⁽²⁾	NS ⁽²⁾	NS ⁽²⁾		
Ī	Oct 06	NS ⁽²⁾	NS ⁽²⁾	NS ⁽²⁾		
	Dec 06	NS ⁽²⁾	NS ⁽²⁾	NS ⁽²⁾		
	Sep 02	ND	ND	ND		
	May 03	1.3	ND	ND		
	Sep 03	14	ND	ND		
	Nov 03	-	-	-		
MW-12	Jan 04	6.1	ND	ND		
	May 05	ND	ND	ND		
	Sep 05	1.1	ND	ND		
	Dec 05	1.2	ND	ND		

W II ID	Sample	Concentration (in ug/L)					
Well ID	Date	perchloroethylene (PCE)	trichloroethene (TCE)	cis-1,2-Dichlorethene			
	Mar 06	1.1	ND	ND			
MW-12	Jun 06	NS	NS	NS			
	Oct 06	ND	ND	ND			
	Dec 06	1.4	ND	ND			
	May 03	2,100	ND	ND			
	Sep 03	2,800	ND	ND			
	Nov 03	-	-	-			
	Jan 04	2,700	ND	ND			
	May 05	5,310	ND	ND			
MW-13	Sep 05	2,600	ND	ND			
l	Dec 05	3,400	ND	ND			
	Mar 06	3,700	ND	ND			
l	Jun 06	2,900	ND	ND			
l	Oct 06	2,800	ND	ND			
l	Dec 06	3,200	ND	ND			
	Nov 03	1,900	ND	ND			
l	Jan 04	2,100	ND	ND			
l	May 05	2,920	5.5	ND			
MXX/ 14	Dec 05	3,400	ND	ND			
MW-14	Mar 06	2,500	ND	ND			
	Jun 06	1,800	ND	ND			
	Oct 06	1,900	ND	ND			
	Dec 06	3,500	ND	ND			
	Nov 03	5.2	ND	ND			
l	Jan 04	2.7	ND	ND			
•	May 05	ND	ND	ND			
	Sep 05	3.6	ND	ND			
MW-15	Dec 05	5.0	ND	ND			
	Mar 06	4.5	ND	ND			
	Jun 06	4.4	ND	ND			
	Oct 06	3.3	ND	ND			
	Dec 06	3.7	ND	ND			
	Nov 03	ND	ND	ND			
	Jan 04	ND	ND	ND			
	May 05	ND	ND	ND			
	Sep 05	ND	ND	ND			
MW-16	Dec 05	ND	ND	ND			
	Mar 06	ND	ND	ND			
	Jun 06	ND	ND	ND			
	Oct 06	ND	ND	ND			
	Dec 06	ND	ND	ND			
	May 05	520	ND	ND			
	Dec 05	470	ND	ND			
MXX 17	Mar 06	NS	NS	NS			
MW-17	Jun 06	NS	NS	NS			
	Oct 06	1,300	ND	ND			
	Dec 06	710	ND	ND			

TABLE 3
SELECTEDVOC CONCENTRATIONS IN MONITORING WELLS
Maryland Square Shopping Center

W 11 VD	Sample	Concentration (in ug/L)					
Well ID	Date	perchloroethylene (PCE)	trichloroethene (TCE)	cis-1,2-Dichlorethene			
	May 05	1,600	ND	ND			
	Sep 05	1,700	ND	ND			
Ι	Dec 05	2,400	ND	ND			
MW-18	Mar 06	1,700	ND	ND			
Ι	Jun 06	1,600	ND	ND			
	Oct 06	2,100	ND	ND			
	Dec 06	1,400	ND	ND			
	Nov 03	1,100	ND	ND			
	Jan 04	1,200	ND	ND			
	May 05	873	ND	ND			
NXX 10 [Dec 05	1,300	ND	ND			
MW-19	Mar 06	NS	NS	NS			
ll [Jun 06	910	ND	ND			
II	Oct 06	840	ND	ND			
	Dec 06	1,200	ND	ND			
	Nov 03	1,800	ND	ND			
II	Jan 04	290	2.8	ND			
II	May 05	1,460	ND	ND			
MXX 20	Dec 05	1,800	ND	ND			
MW-20	Mar 06	NS	NS	NS			
	Jun 06	2,100	ND	ND			
	Oct 06	2,000	ND	ND			
	Dec 06	2,500	ND	ND			
	Nov 03	51	ND	ND			
	Jan 04	55	ND	ND			
	May 05	30	ND	ND			
	Sep 05	19	2.4	1.5			
MW-21	Dec 05	16	1.8	1.3			
II	Mar 06	43	ND	ND			
	Jun 06	32	ND	ND			
	Oct 06	23	ND	ND			
	Dec 06	39	ND	ND			
	May 05	ND	ND	ND			
∥	Sep 05	ND	ND	ND			
∥	Dec 05	1.0	ND	ND			
MW-22	Mar 06	ND	ND	ND			
 	Jun 06	ND	ND	ND			
 	Oct 06	ND	ND	ND			
∥	Dec 06	ND	ND	ND			

W II ID	Sample	Concentration (in ug/L)				
Well ID	Date	perchloroethylene (PCE)	trichloroethene (TCE)	cis-1,2-Dichlorethene		
	May 05	1,430	ND	ND		
	Dec 05	1,900	ND	ND		
MW-23	Mar 06	NS	NS	NS		
W1 W -23	Jun 06	1,500	ND	ND		
	Oct 06	2,000	ND	ND		
	Dec 06	2,100	ND	ND		
	May 05	ND	ND	ND		
	Sep 05	4.3	ND	ND		
	Dec 05	6.7	ND	ND		
MW-24	Mar 06	6.5	ND	ND		
	Jun 06	5.6	ND	ND		
	Oct 06	2.6	ND	ND		
	Dec 06	2.6	ND	ND		
	May 05	993	ND	ND		
	Sep 05	920	ND	ND		
	Dec 05	1,000	ND	ND		
MW-25	Mar 06	970	ND	ND		
	Jun 06	960	ND	ND		
	Oct 06	1,300	ND	ND		
	Dec 06	1,200	ND	ND		
	Mar 06	730	ND	ND		
MANA	Jun 06	770	ND	ND		
MW-26	Dec 06	1,100	ND	ND		
	Oct 06	NS ⁽³⁾	NS ⁽³⁾	NS ⁽³⁾		
	Mar 06	220	ND	ND		
	Jun 06	350	ND	ND		
MW-27	Oct 06	380	ND	ND		
	Dec 06	380	ND	ND		
	<u> </u>	INTERMEDIAT	E WELL			
	Sep 02	670	ND	ND		
	May 03	59	ND	ND		
	Sep 03	9.2	ND	ND		
	Nov 03	-	-	-		
	Jan 04	10	ND	ND		
	May 05	353	ND	ND		
MW-9	Sep 05	64	ND	ND		
	Dec 05	190	ND	ND		
	Mar 06	ND	ND	ND		
	Jun 06	NS	NS	NS		
	Oct 06	160	ND	ND		
	Dec 06	45	ND	ND		

NOTES: ND = None Detected. NS = Not Sampled. '-' cells indicate no data available.

PCE is perchloroethylene (tetrachloroethene). The Maximum Contaminant Level for PCE in drinking water is 5 ug/L.

^{(1) =} Monitoring Well MW-4 was not sampled due to blockage in well casing

^{(2) =} Monitoring Well MW-11 was not sampled due to detection of floating hydrocarbons in the well.

^{(3) =} Monitoring Well MW-26 was not sampled due to landscape rock covering well.

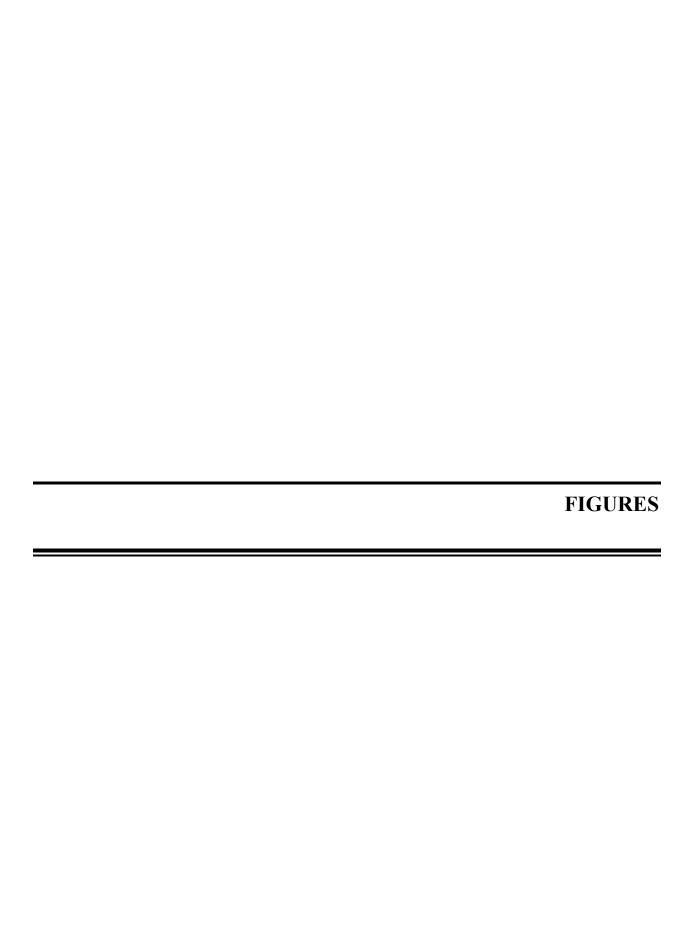
ug/L = micrograms per liter.

TABLE 4 SUMMARY OF OTHER ANALYTICAL DATA Maryland Square Shopping Center

					Concentration				
	Sample	(in mg/L)							
Well ID	Date	Total Iron	Dissolved Manganese	Chloride	Nitrate as N	Sulfate	Total Alkalinity	Total Organic Carbon	
				SHALLOW V	VELLS		1	1	
	May 05	ND	ND	180	8.9	1,613	ND	5.1	
	Sep 05	3.7	0.057	180	8.8	1,800	230	6.0	
	Dec 05	5.0	0.027	200	8.1	1,800	190	1.7	
MW-1	Mar-06	24.0	0.230	170	8.4	1,600	250	3.8	
	Jun-06	NS	NS	NS	NS	NS	NS	NS	
	Oct-06	5.1	0.044	210	8.4	1,900	220	2.8	
	Dec-06	20	0.24	NA	7.3*	NA	NA	2.4	
MW-6	May 05	ND	0.040	200	10.5	1,615	ND	6.0	
MW-12	May 05	ND	ND	270	23.9	1,618	16	4.8	
	May 05	ND	ND	170	6.9	1,562	ND	1.7	
	Sep 05	19.0	0.690	170	6.1	1,700	260	3.6	
	Dec 05	7.0	0.110	190	5.9	1,600	220	1.6	
MW-13	Mar-06	7.7	0.200	240	7.0	1,500	220	1.7	
	Jun-06	15.0	0.490	190	7.9	1,600	230	1.7	
	Oct-06	20.0	0.480	190	6.2	1,700	220	2.7	
	Dec-06	12	0.33	200	6.1	1,700	210	2.1	
	Sep 05	0.9	0.020	160	5.4	1,800	240	3.3	
	Dec 05	3.7	0.015	180	4.7	1,600	200	1.4	
MW-18	Mar-06	2.6	0.012	150	5.4	1,500	220	1.4	
N1 W-18	Jun-06	1.9	ND	200	5.8	1,900	220	1.4	
	Oct-06	2.1	0.011	180	5.2	1,900	210	1.7	
	Dec-06	2.8	0.019	180	5	1,600	210	1.6	
MW-19	May 05	ND	ND	170	5.9	1,599	19	2.7	
MW-23	May 05	ND	ND	200	7.5	1,596	ND	1.8	
	May 05	ND	ND	180	5.9	1,616	ND	1.7	
	Sep 05	1.2	0.020	170	4.5	1,900	300	4.4	
	Dec 05	3.0	ND	190	4.5	1,900	230	1.3	
MW-25	Mar-06	3.4	0.018	160	5.2	1,600	240	2.0	
	Jun-06	2.1	0.006	220	5.7	1,900	230	1.9	
	Oct-06	3.2	0.020	200	5.2	1,900	280	2.0	
	Dec-06	2.6	0.0074	200	4.8	2,000	260	1.7	
Avera	age	9.0	0.177	190	7	1,711	204	2.6	
MANYO	Mar 05	NID	ND IN	TERMEDIAT		1.004	ND	2.1	
MW-9	May 05	ND	ND	110	5.2	1,094	ND	2.1	

NOTES: ND is none detected.

NA is not analyzed.


mg/L is milligrams per liter.

Total iron and manganese are total dissolved values as the samples were field filtered.

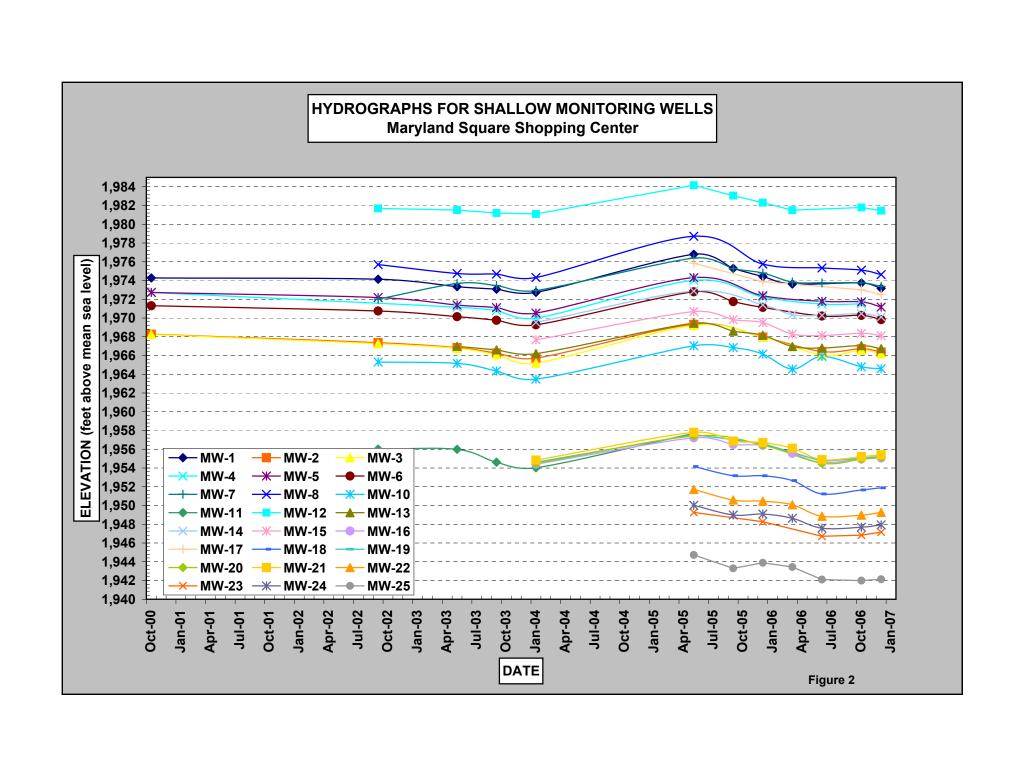
Empty cells indicate no sampling data available.

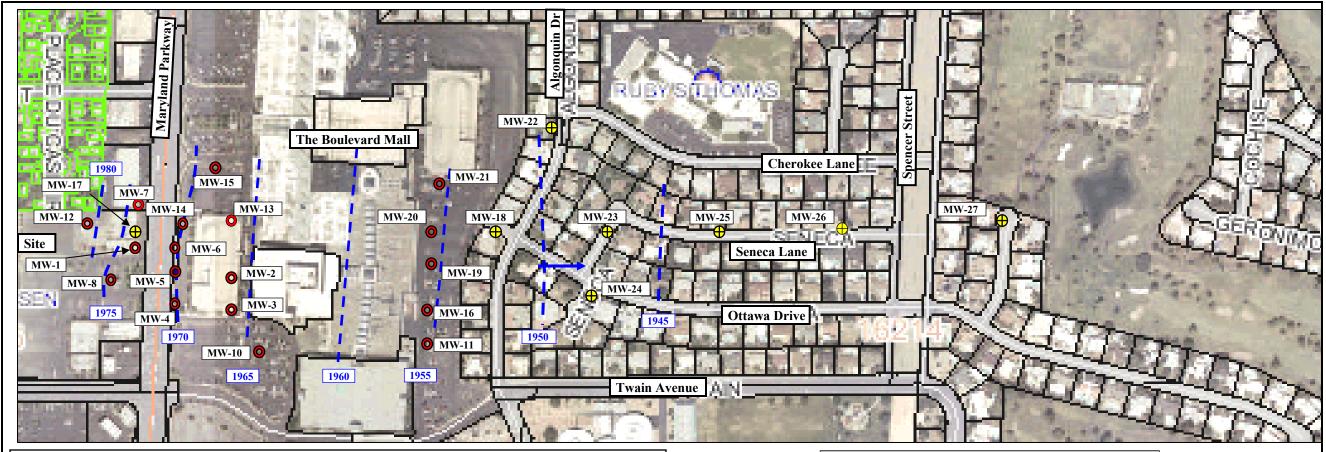
Shallow wells are approximately 25 ft deep; Intermediate wells are 30-40 ft deep.

* Nitrate was analyzed on a preserved sample. The accuracy of Nitrate may be biased high due to the possible oxidation of Nitite to Nitrate

Source: Clark County Assessors Web Site

Scale: 200 feet




SITE LOCATION MAP

Al Phillips The Cleaner Quarterly Groundwater Sampling Maryland Square Shopping Center 3661 South Maryland Parkway Las Vegas, Nevada

4th Quarter 2006 Job No. 26698724

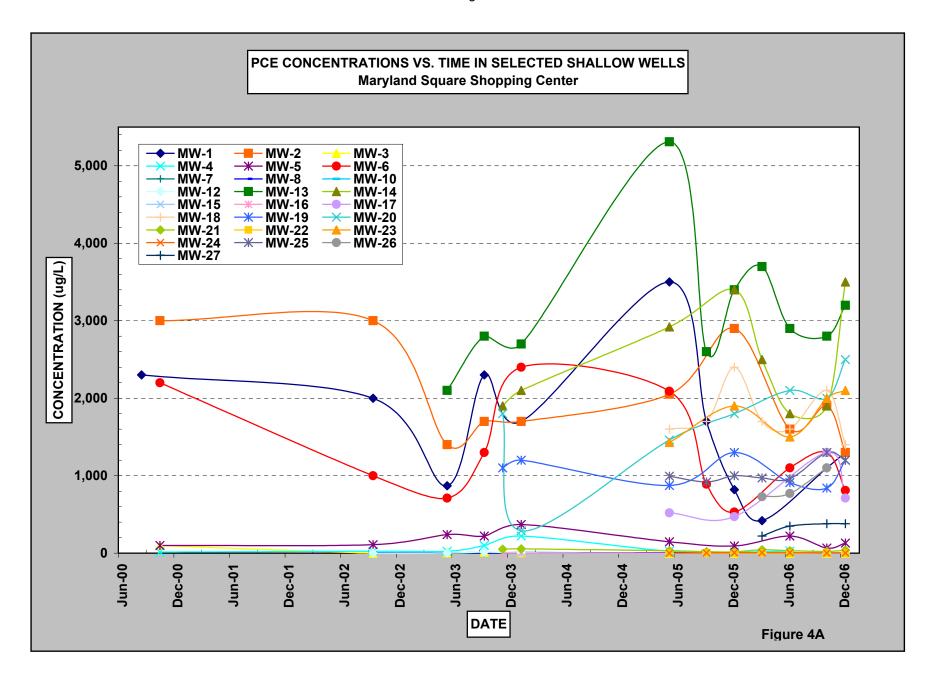
Well	Elevation	Well	Elevation	Well	Elevation
MW-1	1973.16	MW-12	1981.45	MW-22	1949.27
MW-2	1966.37	MW-13	1966.73	MW-23	1947.16
MW-3	1966.17	MW-14	1970.11	MW-24	1947.94
MW-4	NM	MW-15	1968.11	MW-25	1942.13
MW-5	1971.17	MW-16	1955.07	MW-26	*
MW-6	1969.83	MW-17	1972.51	MW-27	*
MW-7	1973.38	MW-18	1951.89	Intermed	iate Well
MW-8	1974.63	MW-19	1955.25	<u>Well</u>	<u>Elevation</u>
MW-10	1964.59	MW-20	1955.14	MW-9	1973.26
MW-11	NM	MW-21	1955.41		

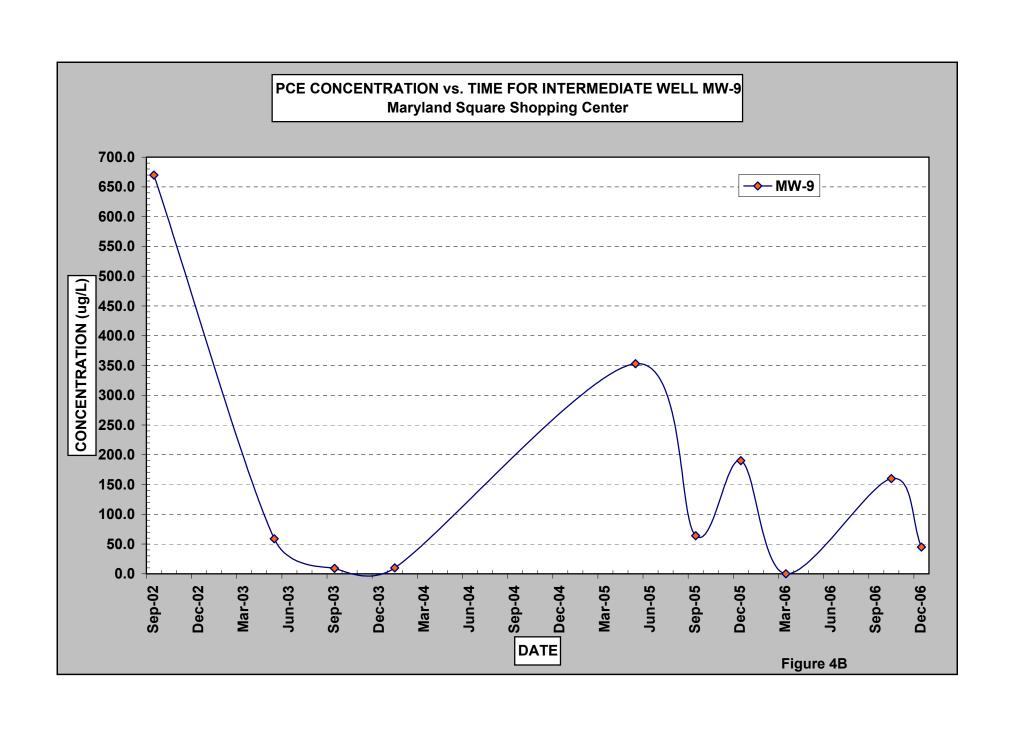
Source: Clark County Assessors Web Site

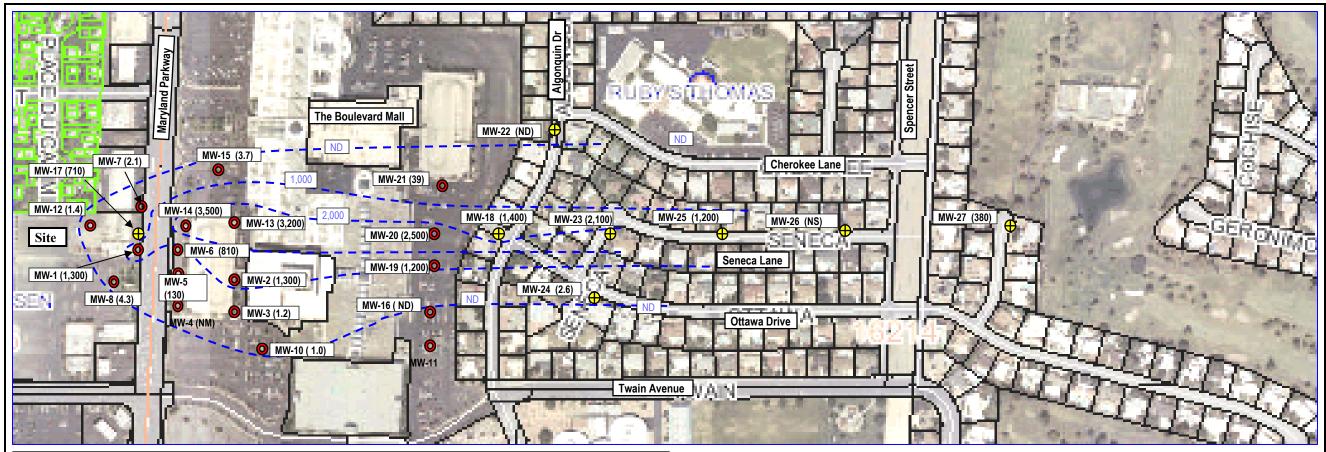
Scale: 0Feet 200 Feet

Legend:

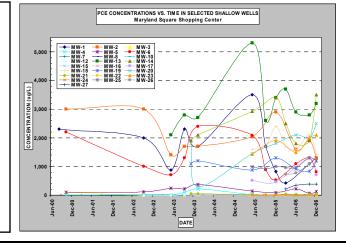
- Approximate Location of Monitoring Well Installed by URS.
- Approximate Location of Monitoring Well Installed by Converse.
- Groundwater Elevation Contour Line
- Approximate Direction of Groundwater Flow

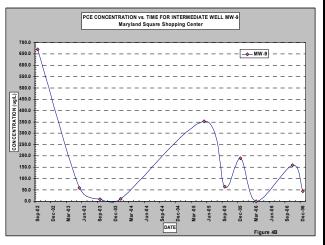

GROUNDWATER ELEVATION CONTOURS FOR SHALLOW WELLS


4th Quarter 2006 Al Phillips The Cleaner Quarterly Groundwater Sampling Maryland Square Shopping Center 3661 South Maryland Parkway Las Vegas, Nevada


4th Quarter 2006 Job No. 26698724

MS 4th Qtr 06 Fig3.ppt FIGURE 3


Figure 4A



Well	Concentration	<u>Well</u>	Concentration	<u>Well</u>	Concentration
MW-1	1,300	MW-12	1.4	MW-22	ND
MW-2	1,300	MW-13	3,200	MW-23	2,100
MW-3	1.2	MW-14	3,500	MW-24	2.6
MW-4	NS	MW-15	3.7	MW-25	1,200
MW-5	130	MW-16	ND	MW-26	NS
MW-6	810	MW-17	710	MW-27	380
MW-7	2.1	MW-18	1,400	Intermed	iate Well
MW-8	4.3	MW-19	1,200	Well	Concentration
MW-10	1.0	MW-20	2,500	MW-9	45
MW-11	NS	MW-21	39		

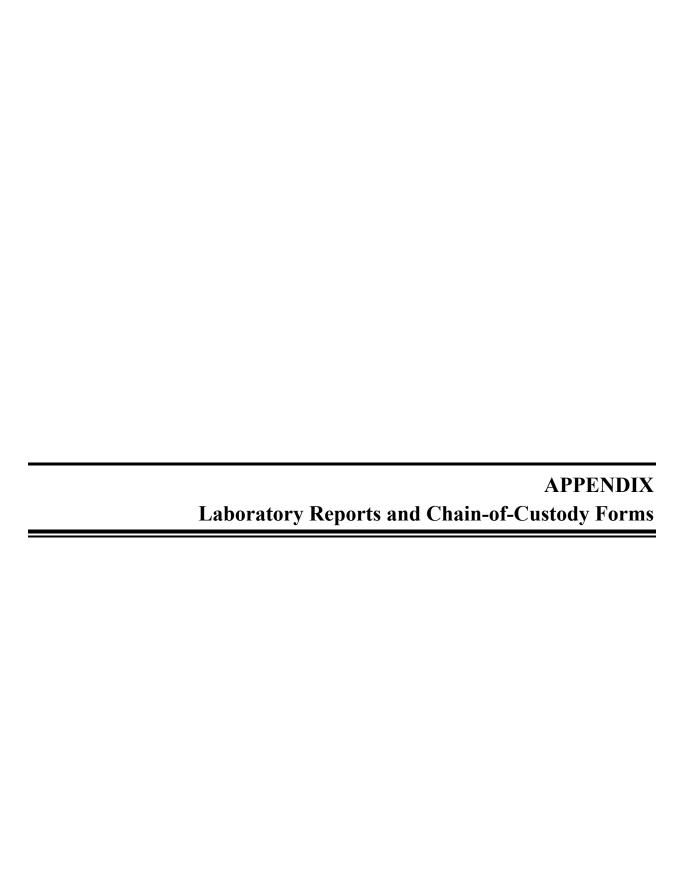
Source: Clark County Assessors Web Site

Scale: 0Feet 200 Feet

Legend:

- Approximate Location of Monitoring Well Installed by URS.
- Approximate Location of Monitoring Well Installed by Converse.
- (25) Concentration of PCE Detected in Groundwater Form Monitoring Well (in ug/L)
- Approximate Concentration Contour of PCE in Groundwater

ND is Non-detect, NS is Not Sampled


SHALLOW MONITORING WELL PCE CONCENTRATIONS AND CONTOURS

4th Quarter 2006 Al Phillips The Cleaner **Quarterly Groundwater Sampling** Maryland Square Shopping Center 3661 South Maryland Parkway Las Vegas, Nevada

4th Quarter 2006 Job No. 26698724

MS 4th Qtr 06 Fig5.ppt

FIGURE 5

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

URS Corporation 811 Grier Dr. Las Vegas, NV 89119 Attn: Holly Woodward Phone: (702) 492-7922 Fax: (702) 492-9149

Date Received: 12/08/06

Job#: 260

26698724/ Maryland Square

Alkalinity

EPA Method 310.1

		Parameter	Concentra	tion R	eporting Limit	Date Sampled	Date Analyzed
Client ID:	MW-25 AP-MS URS06120822-16A	Alkalinity, Total (As CaCO3 at pH 4.	.5)	260	1.0 mg/L	12/06/06	12/12/06
Client ID: Lab ID:	MW-18 AP-MS URS06120822-23A	Alkalinity, Total (As CaCO3 at pH 4.	.5)	210	1.0 mg/L	12/07/06	12/12/06
Client ID : Lab ID :	MW-13 AP-MS URS06120822-24A	Alkalinity, Total (As CaCO3 at pH 4.	.5)	210	1.0 mg/L	12/07/06	12/12/06

Roger Scholl

Kandy Saulner

Walter Firedown

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer
Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV16.

12/14/06 Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

URS Corporation 811 Grier Dr. Las Vegas, NV 89119 Attn: Holly Woodward Phone: (702) 492-7922 Fax: (702) 492-9149 Date Received: 12/08/06

Job#:

26698724/ Maryland Square

Anions by IC EPA Method 300.0 / 9056

	Parameter	Concentration	Reporting Limit	Date / Time Sampled	Date / Time Analyzed
Client ID : MW-25 AP-MS Lab ID : URS06120822-16A	Chloride	200	2.5 mg/L	12/06/06 14:49	12/12/06 04:19
	Nitrate (NO3) - N	4.8	0.25 mg/L	12/06/06 14:49	12/08/06 15:34
	Sulfate (SO4)	2,000	50 mg/L	12/06/06 14:49	12/12/06 04:37
Client ID : MW-1 AP-MS Lab ID : URS06120822-18A	Nitrate (NO3) - N	7.3 *	0.25 mg/L	12/07/06 12:23	12/11/06 14:44
Client ID : MW-18 AP-MS Lab ID : URS06120822-23A	Chloride	180	2.5 mg/L	12/07/06 15:42	12/12/06 04:56
	Nitrate (NO3) - N	5.0	0.25 mg/L	12/07/06 15:42	12/08/06 16:29
	Sulfate (SO4)	1,600	25 mg/L	12/07/06 15:42	12/12/06 05:14
Client ID : MW-13 AP-MS Lab ID : URS06120822-24A	Chloride	200	2.5 mg/L	12/07/06 16:07	12/12/06 05:33
	Nitrate (NO3) - N	6.1	0.25 mg/L	12/07/06 16:07	12/08/06 16:48
	Sulfate (SO4)	1,700	25 mg/L	12/07/06 16:07	12/12/06 05:51

^{*}Nitrate was analyzed on a preserved sample. The accuracy of Nitrate may be biased high due to the possible oxidation of Nitrite to Nitrate.

Roger Scholl Kandy Saulur

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer
Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

 $Alpha\ Analytical,\ Inc.\ currently\ holds\ appropriate\ and\ available\ NDEP\ certifications\ for\ the\ data\ reported\ -\ certification\ \#NV16.$

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

URS Corporation 811 Grier Dr.

Las Vegas, NV 89119

Holly Woodward Attn:

(702) 492-7922 Phone: Fax: (702) 492-9149

Date Received: 12/08/06

Job#: 26698724/ Maryland Square

> Metals by ICPMS EPA Method 200.8

		Parameter	Concentration	Reporting Limit	Date Date Sampled Analyzed
Client ID:	MW-25 AP-MS				
Lab ID :	URS06120822-16A	Manganese (Mn)	0.0074	0.0050 mg/L	12/06/06 12/13/06
		Iron (Fe)	2.6	0.30 mg/L	12/06/06 12/13/06
Client ID:	MW-1 AP-MS				
Lab ID:	URS06120822-18A	Manganese (Mn)	0.24	$0.0050~\mathrm{mg/L}$	12/07/06 12/13/06
		Iron (Fe)	20	0.30 mg/L	12/07/06 12/13/06
Client ID:	MW-18 AP-MS				
Lab ID:	URS06120822-23A	Manganese (Mn)	0.019	0.0050 mg/L	12/07/06 12/13/06
		Iron (Fe)	2.8	0.30 mg/L	12/07/06 12/13/06
Client ID:	MW-13 AP-MS				•
Lab ID:	URS06120822-24A	Manganese (Mn)	0.33	0.0050 mg/L	12/07/06 12/13/06
		Iron (Fe)	12	0.30 mg/L	12/07/06 12/13/06

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer $Sacramento, CA \bullet (916)\ 366-9089\ /\ Las\ Vegas, NV \bullet (702)\ 281-4848\ /\ info@alpha-analytical.com$ Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV16.

12/15/06

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

URS Corporation 811 Grier Dr.

Las Vegas, NV 89119

Attn:

Holly Woodward

Phone: (702) 492-7922

Fax:

(702) 492-9149 Date Received 12/08/06

Job#:

26698724/ Maryland Square

Total Organic Carbon as NonPurgeable Organic Carbon EPA Method SW9060/415.1/SM-5310C

		Parameter	Concentration	Reporting Limit	Date Sampled	Date Analyzed
Client ID : Lab ID :	MW-25 AP-MS URS06120822-16A	Total Organic Carbon	1.7	1.0 mg/L	12/06/06	12/08/06
Client ID : Lab ID :	MW-1 AP-MS URS06120822-18A	Total Organic Carbon	2.4	1.0 mg/L	12/07/06	12/13/06
Client ID : Lab ID :	MW-18 AP-MS URS06120822-23A	Total Organic Carbon	1.6	1.0 mg/L	12/07/06	12/08/06
Client ID: Lab ID:	MW-13 AP-MS URS06120822-24A	Total Organic Carbon	2.1	1.0 mg/L	12/07/06	12/08/06

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV16.

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Attn:

URS Corporation 811 Grier Dr.

Las Vegas, NV 89119

Job#: 26698724/ Maryland Square

Alpha Analytical Number: URS06120822-01A Client I.D. Number: MW-16 AP-MS

Phone: (702) 492-7922 (702) 492-9149 Fax:

> Sampled: 12/04/06 Received: 12/08/06

Holly Woodward

Analyzed: 12/11/06

Volatile Organics by GC/MS EPA Method SW8260B

			Reportir	ng				Reportir	ng
	Compound	Concentration	Limit			Compound	Concentration	Limit	
1	Dichlorodifluoromethane	ND	1.0	μg/L	36	Bromoform	ND	1.0	μg/L
2	Chloromethane	ND	2.0	μg/L	37	Styrene	ND	1.0	μg/L
3	Vinyl chloride	ND	1.0	μg/L	38	o-Xylene	ND	1.0	μg/L
4	Chloroethane	ND	1.0	μg/L	39	1,1,2,2-Tetrachloroethane	ND	1.0	μg/L
5	Bromomethane	ND	2.0	μg/L	40	1,2,3-Trichloropropane	ND	2.0	µg/L
6	Trichlorofluoromethane	ND	1.0	μg/L	41	Isopropylbenzene	ND	1.0	μg/L
7	1,1-Dichloroethene	ND	1.0	μg/L	42	Bromobenzene	ND	1.0	μg/L
8	Dichloromethane	ND	2.0	μg/L	43	n-Propylbenzene	ND	1.0	μg/L
9	trans-1,2-Dichloroethene	ND	1.0	μg/L	44	4-Chlorotoluene	ND	1.0	μg/L
10	1,1-Dichloroethane	ND	1.0	μg/L	45	2-Chlorotoluene	ND	1.0	μg/L
11	cis-1,2-Dichloroethene	ND	1.0	μg/L	46	1,3,5-Trimethylbenzene	ND	1.0	μg/L
12	Bromochloromethane	ND	1.0	μg/L	47	tert-Butylbenzene	ND	1.0	μg/L
13	Chloroform	ND	1.0	μg/L	48	1,2,4-Trimethylbenzene	ND	1.0	μg/L
14	2,2-Dichloropropane	ND	1.0	μg/L	49	sec-Butylbenzene	ND	1.0	μg/L
15	1,2-Dichloroethane	ND	1.0	μg/L	50	1,3-Dichlorobenzene	ND	1.0	μg/L
16	1,1,1-Trichloroethane	ND	1.0	μg/L	51	1,4-Dichlorobenzene	ND	1.0	μg/L
17	1,1-Dichloropropene	ND	1.0	μg/L	52	4-Isopropyltoluene	ND	1.0	μg/L
18	Carbon tetrachloride	ND	1.0	μg/L	. 53	1,2-Dichlorobenzene	ND	1.0	μg/L
19	Benzene	ND	1.0	μg/L	54	n-Butylbenzene	ND	1.0	µg/L
20	Dibromomethane	ND .	1.0	μg/L	55	1,2-Dibromo-3-chloropropane (DBCP		3.0	μg/L
21	1,2-Dichloropropane	ND	1.0	μg/L	56	1,2,4-Trichlorobenzene	ND	2.0	μg/L
22	Trichloroethene	ND	1.0	μg/L	57	Naphthalene	ND	2.0	μg/L
23	Bromodichloromethane	ND	1.0	μg/L	58	Hexachlorobutadiene	ND	2.0	µg/L
24	cis-1,3-Dichloropropene	ND	1.0	μg/L	59	1,2,3-Trichlorobenzene	ND	2.0	µg/L
25	trans-1,3-Dichloropropene	ND	1.0	μg/L	60	Surr: 1,2-Dichloroethane-d4	100		%REC
26	1,1,2-Trichloroethane	ND	1.0	μg/L	61	Surr: Toluene-d8	112		%REC
27	Toluene	ND	1.0	μg/L	62	Surr: 4-Bromofluorobenzene	92		%REC
28	1,3-Dichloropropane	ND	1.0	μg/L					
29	Dibromochloromethane	ND	1.0	μg/L					
30	1,2-Dibromoethane (EDB)	ND	2.0	μg/L					
31	Tetrachloroethene	ND	1.0	μg/L					
32	1,1,1,2-Tetrachloroethane	ND	1.0	μg/L					
33	Chlorobenzene	ND	1.0	μg/L					
34	Ethylbenzene	ND	1.0	μg/L					

ND = Not Detected

35 m,p-Xylene

Roger Scholl

ND

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV16.

12/14/06 Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

URS Corporation 811 Grier Dr.

Las Vegas, NV 89119

Job#: 26698724/ Maryland Square

Alpha Analytical Number: URS06120822-02A

Client I.D. Number: MW-22 AP-MS

Holly Woodward Attn: Phone: (702) 492-7922

Fax: (702) 492-9149

Sampled: 12/04/06

Received: 12/08/06 Analyzed: 12/11/06

Volatile Organics by GC/MS EPA Method SW8260B

			Reportir	ng				Reporti	ng
	Compound	Concentration	Limit			Compound	Concentration	Limit	
1	Dichlorodifluoromethane	ND	1.0	μg/L	36	Bromoform	ND	1.0	μg/L
2	Chloromethane	ND	2.0	μg/L	37	Styrene	ND	1.0	μg/L
3	Vinyl chloride	ND	1.0	μg/L	38	o-Xylene	ND	1.0	μg/L
4	Chloroethane	ND	1.0	μg/L	39	1,1,2,2-Tetrachloroethane	ND	1.0	μg/L
5	Bromomethane	ND	2.0	μg/L	40	1,2,3-Trichloropropane	ND	2.0	μg/L
6	Trichlorofluoromethane	ND	1.0	μg/L	41	Isopropylbenzene	ND	1.0	μg/L
7	1,1-Dichloroethene	ND	1.0	μg/L	42	Bromobenzene	ND	1.0	μg/L
8	Dichloromethane	ND	2.0	μg/L	43	n-Propylbenzene	ND	1.0	μg/L
9	trans-1,2-Dichloroethene	ND	1.0	μg/L	44	4-Chlorotoluene	ND	1.0	μg/L
10	1,1-Dichloroethane	ND	1.0	μg/L	45	2-Chlorotoluene	ND	1.0	μg/L
11	cis-1,2-Dichloroethene	ND	1.0	μg/L	46	1,3,5-Trimethylbenzene	ND	1.0	μg/L
12	Bromochloromethane	ND	1.0	μg/L	47	tert-Butylbenzene	ND	1.0	μg/L
13	Chloroform	7.9	1.0	μg/L	48	1,2,4-Trimethylbenzene	ND	1.0	μg/L
14	2,2-Dichloropropane	ND	1.0	μg/L	49	sec-Butylbenzene	ND	1.0	μg/L
15	1,2-Dichloroethane	ND	1.0	μg/L	50	1,3-Dichlorobenzene	ND	1.0	μg/L
16	1,1,1-Trichloroethane	ND	1.0	μg/L	51	1,4-Dichlorobenzene	ND	1.0	μg/L
17	1,1-Dichloropropene	ND	1.0	μg/L	52	4-Isopropyltoluene	ND	1.0	μg/L
18	Carbon tetrachloride	ND	1.0	μg/L	53	1,2-Dichlorobenzene	ND	1.0	μg/L
19	Benzene	ND	1.0	μg/L	54	n-Butylbenzene	ND	1.0	μg/L
20	Dibromomethane	ND	1.0	μg/L	55	1,2-Dibromo-3-chloropropane (DBCP) ND	3.0	μg/L
21	1,2-Dichloropropane	ND	1.0	μg/L	56	1,2,4-Trichlorobenzene	ND	2.0	μg/L
22	Trichloroethene	ND	1.0	μg/L	57	Naphthalene	ND	2.0	μg/L
23	Bromodichloromethane	ND	1.0	μg/L	58	Hexachlorobutadiene	ND	2.0	μg/L
24	cis-1,3-Dichloropropene	ND	1.0	μg/L	59	1,2,3-Trichlorobenzene	ND	2.0	μg/L
25	trans-1,3-Dichloropropene	ND	1.0	μg/L	60	Surr: 1,2-Dichloroethane-d4	102		%REC
26	1,1,2-Trichloroethane	ND	1.0	μg/L	61	Surr: Toluene-d8	115	*	%REC
27	Toluene	ND	1.0	μg/L	62	Surr: 4-Bromofluorobenzene	92		%REC
28	1,3-Dichloropropane	ND	1.0	μg/L					
29	Dibromochloromethane	ND	1.0	μg/L					
30	1,2-Dibromoethane (EDB)	ND	2.0	μg/L					
31	Tetrachloroethene	ND	1.0	μg/L					
32	1,1,1,2-Tetrachloroethane	ND	1.0	μg/L					
33	Chlorobenzene	ND	1.0	μg/L					
34	Ethylbenzene	ND	1.0	μg/L					

ND

ND = Not Detected

35 m,p-Xylene

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer

 $Sacramento, CA \bullet (916)\ 366-9089\ /\ Las\ Vegas,\ NV \bullet (702)\ 281-4848\ /\ info@alpha-analytical.com$ Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV16.

μg/L

12/14/06

Report Date

^{*}Toluene-d8 surrogate recovery was 115%, with 84-113% criteria. The other 2 surrogates met criteria.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

URS Corporation 811 Grier Dr.

Las Vegas, NV 89119

Job#: 26698724/ Maryland Square

Alpha Analytical Number: URS06120822-03A

Client I.D. Number: MW-12 AP-MS

Attn: Holly Woodward Phone: (702) 492-7922

Fax: (702) 492-9149

Sampled: 12/04/06 Received: 12/08/06

Analyzed: 12/11/06

Volatile Organics by GC/MS EPA Method SW8260B

			Reportir	ng				Reportir	ıg
	Compound	Concentration	Limit			Compound	Concentration	Limit	
1	Dichlorodifluoromethane	ND	1.0	μg/L	36	Bromoform	ND	1.0	μg/L
2	Chloromethane	ND	2.0	μg/L	37	Styrene	ND	1.0	μg/L
3	Vinyl chloride	ND	1.0	μg/L	38	o-Xylene	ND	1.0	μg/L
4	Chloroethane	ND	1.0	μg/L	39	1,1,2,2-Tetrachloroethane	ND	1.0	μg/L
5	Bromomethane	ND	2.0	μg/L	40	1,2,3-Trichloropropane	ND	2.0	μg/L
6	Trichlorofluoromethane	ND	1.0	μg/L	41	Isopropylbenzene	ND	1.0	μg/L
7	1,1-Dichloroethene	ND	1.0	μg/L	42	Bromobenzene	ND	1.0	μg/L
8	Dichloromethane	ND	2.0	μg/L	43	n-Propylbenzene	ND	1.0	μg/L
9	trans-1,2-Dichloroethene	ND	1.0	μg/L	44	4-Chlorotoluene	ND	1.0	μg/L
10	1,1-Dichloroethane	ND	1.0	μg/L	45	2-Chlorotoluene	ND	1.0	μg/L
11	cis-1,2-Dichloroethene	ND	1.0	μg/L	46	1,3,5-Trimethylbenzene	ND	1.0	μg/L
12	Bromochloromethane	ND	1.0	μg/L	47	tert-Butylbenzene	ND	1.0	μg/L
13	Chloroform	2.3	1.0	μg/L	48	1,2,4-Trimethylbenzene	ND	1.0	μg/L
14	2,2-Dichloropropane	ND	1.0	μg/L	49	sec-Butylbenzene	ND	1.0	μg/L
15	1,2-Dichloroethane	ND	1.0	μg/L	50	1,3-Dichlorobenzene	ND	1.0	μg/L
16	1,1,1-Trichloroethane	ND	1.0	μg/L	51	1,4-Dichlorobenzene	ND	1.0	μg/L
17	1,1-Dichloropropene	ND	1.0	μg/L	52	4-Isopropyltoluene	ND	1.0	μg/L
18	Carbon tetrachloride	ND	1.0	μg/L	53	1,2-Dichlorobenzene	ND	1.0	μg/L
19	Benzene	ND	1.0	μg/L	54	n-Butylbenzene	ND	1.0	μg/L
20	Dibromomethane	ND	1.0	μg/L	55	1,2-Dibromo-3-chloropropane (DBCP)	ND	3.0	μg/L
21	1,2-Dichloropropane	ND	1.0	μg/L	56	1,2,4-Trichlorobenzene	ND	2.0	μg/L
22	Trichloroethene	ND	1.0	μg/L	57	Naphthalene	ND	2.0	μg/L
23	Bromodichloromethane	ND	1.0	μg/L	58	Hexachlorobutadiene	ND	2.0	μg/L
24	cis-1,3-Dichloropropene	ND	1.0	μg/L	59	1,2,3-Trichlorobenzene	ND	2.0	μg/L
25	trans-1,3-Dichloropropene	ND	1.0	μg/L	60	Surr: 1,2-Dichloroethane-d4	99		%REC
26	1,1,2-Trichloroethane	ND	1.0	μg/L	61	Surr: Toluene-d8	111		%REC
27	Toluene	ND	1.0	μg/L	62	Surr: 4-Bromofluorobenzene	96		%REC
28	1,3-Dichloropropane	ND	1.0	μg/L					
29	Dibromochloromethane	ND	1.0	μg/L					
30	1,2-Dibromoethane (EDB)	ND	2.0	μg/L					
31	Tetrachloroethene	1.4	1.0	μg/L					
32	1,1,1,2-Tetrachloroethane	ND	1.0	μg/L					
33	Chlorobenzene	ND	1.0	μg/L					
34	Ethylbenzene	ND	1.0	μg/L					
35	m,p-Xylene	ND	1.0	μg/L					

ND = Not Detected

Roger Scholl Kandy San

Walter Firehour

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer
Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com
Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV16.

12/14/06 Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

 URS Corporation
 Attn: Holly Woodward

 811 Grier Dr.
 Phone: (702) 492-7922

 Las Vegas, NV 89119
 Fax: (702) 492-9149

Job#: 26698724/ Maryland Square

Alpha Analytical Number: URS06120822-04A Sampled: 12/05/06 Client I.D. Number: MW-10 AP-MS Received: 12/08/06

Analyzed: 12/11/06

Volatile Organics by GC/MS EPA Method SW8260B

			Reportir	ng				Reporti	ng
	Compound	Concentration	Limit		THE PROPERTY AND THE PR	Compound	Concentration	Limit	
1	Dichlorodifluoromethane	ND	1.0	μg/L	36	Bromoform	ND	1.0	μg/L
2	Chloromethane	ND	4.0	μg/L	37	Styrene	ND	1.0	μg/L
3	Vinyl chloride	ND	1.0	μg/L	38	o-Xylene	ND	1.0	μg/L
4	Chloroethane	ND	1.0	μg/L	39	1,1,2,2-Tetrachloroethane	ND	1.0	μg/L
5	Bromomethane	ND	4.0	μg/L	40	1,2,3-Trichloropropane	ND	4.0	μg/L
6	Trichlorofluoromethane	ND	1.0	μg/L	41	Isopropylbenzene	ND	1.0	μg/L
7	1,1-Dichloroethene	ND	1.0	μg/L	42	Bromobenzene	ND	1.0	μg/L
8	Dichloromethane	ND	4.0	μg/L	43	n-Propylbenzene	ND	1.0	μg/L
9	trans-1,2-Dichloroethene	ND	1.0	μg/L	44	4-Chlorotoluene	ND	1.0	μg/L
10	1,1-Dichloroethane	ND	1.0	μg/L	45	2-Chlorotoluene	ND	1.0	μg/L
11	cis-1,2-Dichloroethene	ND	1.0	μg/L	46	1,3,5-Trimethylbenzene	ND	1.0	μg/L
12	Bromochloromethane	. ND	1.0	μg/L	47	tert-Butylbenzene	ND	1.0	μg/L
13	Chloroform	ND	1.0	μg/L	48	1,2,4-Trimethylbenzene	ND	1.0	μg/L
14	2,2-Dichloropropane	ND	1.0	μg/L	49	sec-Butylbenzene	ND	1.0	μg/L
15	1,2-Dichloroethane	ND	1.0	μg/L	50	1,3-Dichlorobenzene	ND	1.0	μg/L
16	1,1,1-Trichloroethane	ND	1.0	μg/L	51	1,4-Dichlorobenzene	ND	1.0	μg/L
17	1,1-Dichloropropene	ND	1.0	μg/L	52	4-Isopropyltoluene	ND	1.0	μg/L
18	Carbon tetrachloride	ND	1.0	μg/L	53	1,2-Dichlorobenzene	ND	1.0	μg/L
19	Benzene	ND	1.0	μg/L	54	n-Butylbenzene	ND	1.0	μg/L
20	Dibromomethane	ND	1.0	μg/L	55	1,2-Dibromo-3-chloropropane (DBCP) ND	6.0	μg/L
21	1,2-Dichloropropane	ND	1.0	μg/L	56	1,2,4-Trichlorobenzene	ND	4.0	μg/L
22	Trichloroethene	ND	1.0	μg/L	57	Naphthalene	ND	4.0	μg/L
23	Bromodichloromethane	ND	1.0	μg/L	58	Hexachlorobutadiene	ND	4.0	μg/L
24	cis-1,3-Dichloropropene	ND	1.0	μg/L	59	1,2,3-Trichlorobenzene	ND	4.0	μg/L
25	trans-1,3-Dichloropropene	ND	1.0	μg/L	60	Surr: 1,2-Dichloroethane-d4	109		%REC
26	1,1,2-Trichloroethane	ND	1.0	μg/L	61	Surr: Toluene-d8	103		%REC
27	Toluene	ND	1.0	μg/L	62	Surr: 4-Bromofluorobenzene	96		%REC
28	1,3-Dichloropropane	ND	1.0	μg/L					
29	Dibromochloromethane	ND	1.0	μg/L					
30	1,2-Dibromoethane (EDB)	ND	4.0	μg/L					
31	Tetrachloroethene	1.0	1.0	μg/L					
32	1,1,1,2-Tetrachloroethane	ND	1.0	μg/L					
33	Chlorobenzene	ND	1.0	μg/L					
34	Ethylbenzene	ND	1.0	μg/L					

Some Reporting Limits were increased due to sample foaming.

ND

ND = Not Detected

35 m,p-Xylene

Roger Scholl Kandy Saulner Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV16.

12/14/06 Report Date

D 1 C1

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

URS Corporation 811 Grier Dr.

Las Vegas, NV 89119

Job#: 26698724/ Maryland Square

Alpha Analytical Number: URS06120822-05A

Client I.D. Number: MW-3 AP-MS

Attn: Holly Woodward Phone: (702) 492-7922

Fax: (702) 492-9149

Sampled: 12/05/06

Received: 12/08/06 Analyzed: 12/11/06

Volatile Organics by GC/MS EPA Method SW8260B

	Rep							Reportir	ng
	Compound	Concentration	Limit			Compound	Concentration	Limit	
1	Dichlorodifluoromethane	ND	1.0	μg/L	36	Bromoform	ND	1.0	μg/L
2	Chloromethane	ND	2.0	μg/L	37	Styrene	ND	1.0	μg/L
3	Vinyl chloride	ND	1.0	μg/L	38	o-Xylene	ND	1.0	μg/L
4	Chloroethane	ND	1.0	μg/L	39	1,1,2,2-Tetrachloroethane	ND	1.0	μg/L
5	Bromomethane	ND	2.0	μg/L	40	1,2,3-Trichloropropane	ND	2.0	μg/L
6	Trichlorofluoromethane	ND	1.0	μg/L	41	Isopropylbenzene	ND	1.0	μg/L
7	1,1-Dichloroethene	ND	1.0	μg/L	42	Bromobenzene	ND	1.0	μg/L
8	Dichloromethane	ND	2.0	μg/L	43	n-Propylbenzene	ND	1.0	μg/L
9	trans-1,2-Dichloroethene	ND	1.0	μg/L	44	4-Chlorotoluene	ND	1.0	μg/L
10	1,1-Dichloroethane	ND	1.0	μg/L	45	2-Chlorotoluene	ND	1.0	μg/L
11	cis-1,2-Dichloroethene	ND	1.0	μg/L	46	1,3,5-Trimethylbenzene	ND	1.0	μg/L
12	Bromochloromethane	ND	1.0	μg/L	47	tert-Butylbenzene	ND	1.0	μg/L
13	Chloroform	2.2	1.0	μg/L	48	1,2,4-Trimethylbenzene	ND	1.0	μg/L
14	2,2-Dichloropropane	ND	1.0	μg/L	49	sec-Butylbenzene	ND	1.0	μg/L
15	1,2-Dichloroethane	ND	1.0	μg/L	50	1,3-Dichlorobenzene	ND	1.0	μg/L
16	1,1,1-Trichloroethane	ND	1.0	μg/L	51	1,4-Dichlorobenzene	ND	1.0	μg/L
17	1,1-Dichloropropene	ND	1.0	μg/L	52	4-Isopropyltoluene	ND	1.0	μg/L
18	Carbon tetrachloride	ND	1.0	μg/L	53	1,2-Dichlorobenzene	ND	1.0	μg/L
19	Benzene	ND	1.0	μg/L	54	n-Butylbenzene	ND	1.0	μg/L
20	Dibromomethane	ND	1.0	μg/L	55	1,2-Dibromo-3-chloropropane (DBCP)) ND	3.0	μg/L
21	1,2-Dichloropropane	ND	1.0	μg/L	56	1,2,4-Trichlorobenzene	ND	2.0	μg/L
22	Trichloroethene	ND	1.0	μg/L	57	Naphthalene	ND	2.0	μg/L
23	Bromodichloromethane	ND	1.0	μg/L	58	Hexachlorobutadiene	ND	2.0	μg/L
24	cis-1,3-Dichloropropene	ND	1.0	μg/L	59	1,2,3-Trichlorobenzene	ND	2.0	μg/L
25	trans-1,3-Dichloropropene	ND	1.0	μg/L	60	Surr: 1,2-Dichloroethane-d4	114		%REC
26	1,1,2-Trichloroethane	ND	1.0	μg/L	61	Surr: Toluene-d8	111		%REC
27	Toluene	ND	1.0	μg/L	62	Surr: 4-Bromofluorobenzene	99		%REC
28	1,3-Dichloropropane	ND	1.0	μg/L					
29	Dibromochloromethane	ND	1.0	μg/L					
30	1,2-Dibromoethane (EDB)	ND	2.0	μg/L					
31	Tetrachloroethene	1.2	1.0	μg/L					
32	1,1,1,2-Tetrachloroethane	ND	1.0	μg/L					
33	Chlorobenzene	ND	1.0	μg/L					
34	Ethylbenzene	ND	1.0	μg/L					
35	m,p-Xylene	ND	1.0	μg/L					

ND = Not Detected

Roger Scholl Kandy Sand

Walter Hirihour

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer
Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV16.

12/14/06 Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

URS Corporation 811 Grier Dr.

Las Vegas, NV 89119

Job#: 26698724/ Maryland Square

Alpha Analytical Number: URS06120822-06A

Client I.D. Number: MW-8 AP-MS

Holly Woodward Attn: Phone: (702) 492-7922

Fax:

(702) 492-9149

Sampled: 12/05/06

Received: 12/08/06 Analyzed: 12/11/06

Volatile Organics by GC/MS EPA Method SW8260B

			Reportir	ng				Reportir	ng
	Compound	Concentration	Limit		,	Compound	Concentration	Limit	
1	Dichlorodifluoromethane	ND	1.0	μg/L	36	Bromoform	ND	1.0	μg/L
2	Chloromethane	ND	2.0	μg/L	37	Styrene	ND	1.0	μg/L
3	Vinyl chloride	ND	1.0	μg/L	38	o-Xylene	ND	1.0	μg/L
4	Chloroethane	ND	1.0	μg/L	39	1,1,2,2-Tetrachloroethane	ND	1.0	μg/L
5	Bromomethane	ND	2.0	μg/L	40	1,2,3-Trichloropropane	ND	2.0	μg/L
6	Trichlorofluoromethane	ND	1.0	μg/L	41	Isopropylbenzene	ND	1.0	μg/L
7	1,1-Dichloroethene	ND	1.0	μg/L	42	Bromobenzene	ND	1.0	μg/L
8	Dichloromethane	ND	2.0	μg/L	43	n-Propylbenzene	ND	1.0	μg/L
9	trans-1,2-Dichloroethene	ND	1.0	μg/L	44	4-Chlorotoluene	ND	1.0	μg/L
10	1,1-Dichloroethane	ND	1.0	μg/L	45	2-Chlorotoluene	ND	1.0	μg/L
11	cis-1,2-Dichloroethene	ND	1.0	μg/L	46	1,3,5-Trimethylbenzene	ND	1.0	μg/L
12	Bromochloromethane	ND	1.0	μg/L	47	tert-Butylbenzene	ND	1.0	μg/L
13	Chloroform	3.4	1.0	μg/L	48	1,2,4-Trimethylbenzene	ND	1.0	μg/L
14	2,2-Dichloropropane	ND	1.0	μg/L	49	sec-Butylbenzene	ND	1.0	μg/L
15	1,2-Dichloroethane	ND	1.0	μg/L	50	1,3-Dichlorobenzene	ND	1.0	μg/L
16	1,1,1-Trichloroethane	ND	1.0	μg/L	51	1,4-Dichlorobenzene	ND	1.0	μg/L
17	1,1-Dichloropropene	ND	1.0	μg/L	52	4-Isopropyltoluene	ND	1.0	μg/L
18	Carbon tetrachloride	ND	1.0	μg/L	53	1,2-Dichlorobenzene	ND	1.0	μg/L
19	Benzene	ND	1.0	μg/L	54	n-Butylbenzene	ND	1.0	μg/L
20	Dibromomethane	ND	1.0	μg/L	55	1,2-Dibromo-3-chloropropane (DBCP)	ND	3.0	μg/L
21	1,2-Dichloropropane	ND	1.0	μg/L	56	1,2,4-Trichlorobenzene	ND	2.0	μg/L
22	Trichloroethene	ND	1.0	μg/L	57	Naphthalene	ND	2.0	μg/L
23	Bromodichloromethane	ND	1.0	μg/L	58	Hexachlorobutadiene	ND	2.0	μg/L
24	cis-1,3-Dichloropropene	ND	1.0	μg/L	59	1,2,3-Trichlorobenzene	ND	2.0	μg/L
25	trans-1,3-Dichloropropene	ND	1.0	μg/L	60	Surr: 1,2-Dichloroethane-d4	100		%REC
26	1,1,2-Trichloroethane	ND	1.0	μg/L	61	Surr: Toluene-d8	111		%REC
27	Toluene	ND	1.0	μg/L	62	Surr: 4-Bromofluorobenzene	94		%REC
28	1,3-Dichloropropane	ND	1.0	μg/L					
29	Dibromochloromethane	ND	1.0	μg/L					
30	1,2-Dibromoethane (EDB)	ND	2.0	μg/L					
31	Tetrachloroethene	4.3	1.0	μg/L					
32	1,1,1,2-Tetrachloroethane	ND	1.0	μg/L					
33	Chlorobenzene	ND	1.0	μg/L					
34	Ethylbenzene	ND	1.0	μg/L					
35	m,p-Xylene	ND	1.0	μg/L					

ND = Not Detected

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer

12/14/06

Report Date

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV16.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

URS Corporation 811 Grier Dr.

Las Vegas, NV 89119

Job#: 26698724/ Maryland Square

Alpha Analytical Number: URS06120822-07A

Client I.D. Number: MW-15 AP-MS

Holly Woodward Attn: Phone: (702) 492-7922

Fax: (702) 492-9149

Sampled: 12/05/06 Received: 12/08/06

Analyzed: 12/11/06

Volatile Organics by GC/MS EPA Method SW8260B

			Reportir	ng				Reportir	ng
	Compound	Concentration	Limit			Compound	Concentration	Limit	
1	Dichlorodifluoromethane	ND	1.0	μg/L	36	Bromoform	ND	1.0	μg/L
2	Chloromethane	ND	2.0	μg/L	37	Styrene	ND	1.0	μg/L
3	Vinyl chloride	ND	1.0	μg/L	38	o-Xylene	ND	1.0	μg/L
4	Chloroethane	ND	1.0	μg/L	39	1,1,2,2-Tetrachloroethane	ND	1.0	μg/L
5	Bromomethane	ND	2.0	μg/L	40	1,2,3-Trichloropropane	ND	2.0	μg/L
6	Trichlorofluoromethane	ND	1.0	μg/L	41	Isopropylbenzene	ND	1.0	μg/L
7	1,1-Dichloroethene	ND	1.0	μg/L	42	Bromobenzene	ND	1.0	μg/L
8	Dichloromethane	ND	2.0	μg/L	43	n-Propylbenzene	ND	1.0	μg/L
9	trans-1,2-Dichloroethene	ND	1.0	μg/L	44	4-Chlorotoluene	ND	1.0	μg/L
10	1,1-Dichloroethane	ND	1.0	μg/L	45	2-Chlorotoluene	ND	1.0	μg/L
11	cis-1,2-Dichloroethene	ND	1.0	μg/L	46	1,3,5-Trimethylbenzene	ND	1.0	μg/L
12	Bromochloromethane	ND	1.0	μg/L	47	tert-Butylbenzene	ND	1.0	μg/L
13	Chloroform	1.1	1.0	μg/L	48	1,2,4-Trimethylbenzene	ND	1.0	μg/L
14	2,2-Dichloropropane	ND	1.0	μg/L	49	sec-Butylbenzene	ND	1.0	μg/L
15	1,2-Dichloroethane	ND	1.0	μg/L	50	1,3-Dichlorobenzene	ND	1.0	μg/L
16	1,1,1-Trichloroethane	ND	1.0	μg/L	51	1,4-Dichlorobenzene	ND	1.0	μg/L
17	1,1-Dichloropropene	ND	1.0	μg/L	52	4-Isopropyltoluene	ND	1.0	μg/L
18	Carbon tetrachloride	ND	1.0	μg/L	53	1,2-Dichlorobenzene	ND	1.0	μg/L
19	Benzene	ND	1.0	μg/L	54	n-Butylbenzene	ND	1.0	μg/L
20	Dibromomethane	ND	1.0	μg/L	55	1,2-Dibromo-3-chloropropane (DBCP) ND	3.0	μg/L
21	1,2-Dichloropropane	ND	1.0	μg/L	56	1,2,4-Trichlorobenzene	ND	2.0	μg/L
22	Trichloroethene	ND	1.0	μg/L	57	Naphthalene	ND	2.0	μg/L
23	Bromodichloromethane	ND	1.0	μg/L	58	Hexachlorobutadiene	ND	2.0	μg/L
24	cis-1,3-Dichloropropene	ND	1.0	μg/L	59	1,2,3-Trichlorobenzene	ND	2.0	μg/L
25	trans-1,3-Dichloropropene	ND	1.0	μg/L	60	Surr: 1,2-Dichloroethane-d4	113		%REC
26	1,1,2-Trichloroethane	ND	1.0	μg/L	61	Surr: Toluene-d8	106		%REC
27	Toluene	ND	1.0	μg/L	62	Surr: 4-Bromofluorobenzene	95		%REC
28	1,3-Dichloropropane	ND	1.0	μg/L					
29	Dibromochloromethane	ND	1.0	μg/L					
30	1,2-Dibromoethane (EDB)	ND	2.0	μg/L					
31	Tetrachloroethene	3.7	1.0	μg/L					
32	1,1,1,2-Tetrachloroethane	ND	1.0	μg/L					
33	Chlorobenzene	ND	1.0	μg/L					
34	Ethylbenzene	ND	1.0	μg/L					
35	m,p-Xylene	ND	1.0	μg/L					

ND = Not Detected

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV16.

12/14/06

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

 URS Corporation
 Attn:
 Holly Woodward

 811 Grier Dr.
 Phone:
 (702) 492-7922

 Las Vegas, NV 89119
 Fax:
 (702) 492-9149

Job#: 26698724/ Maryland Square

Alpha Analytical Number: URS06120822-08A

Client I.D. Number: MW-7 AP-MS

Sampled: 12/05/06

Received: 12/08/06 Analyzed: 12/11/06

Volatile Organics by GC/MS EPA Method SW8260B

		Reportir	ng				Reportir	ng	
	Compound	Concentration	Limit			Compound	Concentration	Limit	
1	Dichlorodifluoromethane	ND	1.0	μg/L	36	Bromoform	ND	1.0	μg/L
2	Chloromethane	ND	2.0	μg/L	37	Styrene	ND	1.0	μg/L
3	Vinyl chloride	ND	1.0	μg/L	38	o-Xylene	ND	1.0	μg/L
4	Chloroethane	ND	1.0	μg/L	39	1,1,2,2-Tetrachloroethane	ND	1.0	μg/L
5	Bromomethane	ND	2.0	μg/L	40	1,2,3-Trichloropropane	ND	2.0	μg/L
6	Trichlorofluoromethane	ND	1.0	μg/L	41	Isopropylbenzene	ND	1.0	μg/L
7	1,1-Dichloroethene	ND	1.0	μg/L	42	Bromobenzene	ND	1.0	μg/L
8	Dichloromethane	ND	2.0	μg/L	43	n-Propylbenzene	ND	1.0	μg/L
9	trans-1,2-Dichloroethene	ND	1.0	μg/L	44	4-Chlorotoluene	ND	1.0	μg/L
10	1,1-Dichloroethane	ND	1.0	μg/L	45	2-Chlorotoluene	ND	1.0	μg/L
11	cis-1,2-Dichloroethene	ND	1.0	μg/L	46	1,3,5-Trimethylbenzene	ND	1.0	μg/L
12	Bromochloromethane	ND	1.0	μg/L	47	tert-Butylbenzene	ND	1.0	μg/L
13	Chloroform	1.9	1.0	μg/L	48	1,2,4-Trimethylbenzene	ND	1.0	μg/L
14	2,2-Dichloropropane	ND	1.0	μg/L	49	sec-Butylbenzene	ND	1.0	μg/L
15	1,2-Dichloroethane	ND	1.0	μg/L	50	1,3-Dichlorobenzene	ND	1.0	μg/L
16	1,1,1-Trichloroethane	ND	1.0	μg/L	51	1,4-Dichlorobenzene	ND	1.0	μg/L
17	1,1-Dichloropropene	ND	1.0	μg/L	52	4-Isopropyltoluene	ND	1.0	μg/L
18	Carbon tetrachloride	ND	1.0	μg/L	53	1,2-Dichlorobenzene	ND	1.0	μg/L
19	Benzene	ND	1.0	μg/L	54	n-Butylbenzene	ND	1.0	μg/L
20	Dibromomethane	ND	1.0	μg/L	55	1,2-Dibromo-3-chloropropane (DBCP) ND	3.0	μg/L
21	1,2-Dichloropropane	ND	1.0	μg/L	56	1,2,4-Trichlorobenzene	ND	2.0	μg/L
22	Trichloroethene	ND	1.0	μg/L	57	Naphthalene	ND	2.0	μg/L
23	Bromodichloromethane	ND	1.0	μg/L	58	Hexachlorobutadiene	ND	2.0	μg/L
24	cis-1,3-Dichloropropene	ND	1.0	μg/L	59	1,2,3-Trichlorobenzene	ND	2.0	μg/L
25	trans-1,3-Dichloropropene	ND	1.0	μg/L	60	Surr: 1,2-Dichloroethane-d4	113		%REC
26	1,1,2-Trichloroethane	ND	1.0	μg/L	61	Surr: Toluene-d8	109		%REC
27	Toluene	ND	1.0	μg/L	62	Surr: 4-Bromofluorobenzene	96		%REC
28	1,3-Dichloropropane	ND	1.0	μg/L					
29	Dibromochloromethane	ND	1.0	μg/L					
30	1,2-Dibromoethane (EDB)	ND	2.0	μg/L					
31	Tetrachloroethene	2.1	1.0	μg/L					
32	1,1,1,2-Tetrachloroethane	ND	1.0	μg/L					
33	Chlorobenzene	ND	1.0	μg/L					
34	Ethylbenzene	ND	1.0	μg/L					
0.5	V. I	ND	4.0						

ND = Not Detected

m,p-Xylene

35

Roger L. Scholl, Ph.D., Laboratory Director • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer

ND

 $Sacramento, CA \bullet (916)\ 366-9089\ /\ Las\ Vegas, NV \bullet (702)\ 281-4848\ /\ info@alpha-analytical.com$ Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV16.

12/14/06

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

URS Corporation 811 Grier Dr. Las Vegas, NV 89119

Job#: 26698724/ Maryland Square

Alpha Analytical Number: URS06120822-09A

Client I.D. Number: MW-24 AP-MS

Holly Woodward Attn: Phone: (702) 492-7922

Fax: (702) 492-9149

Sampled: 12/05/06 Received: 12/08/06 Analyzed: 12/11/06

Volatile Organics by GC/MS EPA Method SW8260B

		Reportir	ng			Reporting			
	Compound	Concentration	Limit			Compound	Concentration	Limit	
1	Dichlorodifluoromethane	ND	1.0	μg/L	36	Bromoform	ND	1.0	μg/L
2	Chloromethane	ND	2.0	μg/L	37	Styrene	ND	1.0	μg/L
3	Vinyl chloride	ND	1.0	μg/L	38	o-Xylene	ND	1.0	μg/L
4	Chloroethane	ND	1.0	μg/L	39	1,1,2,2-Tetrachloroethane	ND	1.0	μg/L
5	Bromomethane	ND	2.0	μg/L	40	1,2,3-Trichloropropane	ND	2.0	μg/L
6	Trichlorofluoromethane	ND	1.0	μg/L	41	Isopropylbenzene	ND	1.0	μg/L
7	1,1-Dichloroethene	ND	1.0	μg/L	42	Bromobenzene	ND	1.0	μg/L
8	Dichloromethane	ND	2.0	μg/L	43	n-Propylbenzene	ND	1.0	μg/L
9	trans-1,2-Dichloroethene	ND	1.0	μg/L	44	4-Chlorotoluene	ND	1.0	μg/L
10	1,1-Dichloroethane	ND	1.0	μg/L	45	2-Chlorotoluene	ND	1.0	μg/L
11	cis-1,2-Dichloroethene	ND	1.0	μg/L	46	1,3,5-Trimethylbenzene	ND	1.0	μg/L
12	Bromochloromethane	ND	1.0	μg/L	47	tert-Butylbenzene	ND	1.0	μg/L
13	Chloroform	ND	1.0	μg/L	48	1,2,4-Trimethylbenzene	ND	1.0	μg/L
14	2,2-Dichloropropane	ND	1.0	μg/L	49	sec-Butylbenzene	ND	1.0	μg/L
15	1,2-Dichloroethane	ND	1.0	μg/L	50	1,3-Dichlorobenzene	ND	1.0	μg/L
16	1,1,1-Trichloroethane	ND	1.0	μg/L	51	1,4-Dichlorobenzene	ND	1.0	μg/L
17	1,1-Dichloropropene	ND	1.0	μg/L	52	4-Isopropyltoluene	ND	1.0	μg/L
18	Carbon tetrachloride	ND	1.0	μg/L	53	1,2-Dichlorobenzene	ND	1.0	μg/L
19	Benzene	ND	1.0	μg/L	54	n-Butylbenzene	ND	1.0	μg/L
20	Dibromomethane	ND	1.0	μg/L	55	1,2-Dibromo-3-chloropropane (DBCP) ND	3.0	μg/L
21	1,2-Dichloropropane	ND	1.0	μg/L	56	1,2,4-Trichlorobenzene	ND	2.0	μg/L
22	Trichloroethene	ND	1.0	μg/L	57	Naphthalene	ND	2.0	μg/L
23	Bromodichloromethane	ND	1.0	μg/L	58	Hexachlorobutadiene	ND	2.0	μg/L
24	cis-1,3-Dichloropropene	ND	1.0	μg/L	59	1,2,3-Trichlorobenzene	ND	2.0	μg/L
25	trans-1,3-Dichloropropene	ND	1.0	μg/L	60	Surr: 1,2-Dichloroethane-d4	118		%REC
26	1,1,2-Trichloroethane	ND	1.0	μg/L	61	Surr: Toluene-d8	109		%REC
27	Toluene	ND	1.0	μg/L	62	Surr: 4-Bromofluorobenzene	94		%REC
28	1,3-Dichloropropane	ND	1.0	μg/L					
29	Dibromochloromethane	ND	1.0	μg/L					
30	1,2-Dibromoethane (EDB)	ND	2.0	μg/L					
31	Tetrachloroethene	2.6	1.0	μg/L					
32	1,1,1,2-Tetrachloroethane	ND	1.0	μg/L					
33	Chlorobenzene	ND	1.0	μg/L					
34	Ethylbenzene	ND	1.0	μg/L					
35	m,p-Xylene	ND	1.0	μg/L					

ND = Not Detected

Roger Scholl Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer

12/14/06

Report Date

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV16.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

URS Corporation 811 Grier Dr.

Las Vegas, NV 89119

Job#: 26698724/ Maryland Square

Alpha Analytical Number: URS06120822-10A

Client I.D. Number: MW-21 AP-MS

Holly Woodward Attn: Phone: (702) 492-7922

Fax: (702) 492-9149

Sampled: 12/05/06

Received: 12/08/06 Analyzed: 12/11/06

Volatile Organics by GC/MS EPA Method SW8260B

			Reportir	ng				Reportir	ng
	Compound	Concentration	Limit			Compound	Concentration	Limit	
1	Dichlorodifluoromethane	ND	1.0	μg/L	36	Bromoform	ND	1.0	μg/L
2	Chloromethane	ND	2.0	μg/L	37	Styrene	ND	1.0	μg/L
3	Vinyl chloride	ND	1.0	μg/L	38	o-Xylene	ND	1.0	μg/L
4	Chloroethane	ND	1.0	μg/L	39	1,1,2,2-Tetrachloroethane	ND	1.0	μg/L
5	Bromomethane	ND	2.0	μg/L	40	1,2,3-Trichloropropane	ND	2.0	μg/L
6	Trichlorofluoromethane	ND	1.0	μg/L	41	Isopropylbenzene	ND	1.0	μg/L
7	1,1-Dichloroethene	ND	1.0	μg/L	42	Bromobenzene	ND	1.0	μg/L
8	Dichloromethane	ND	2.0	μg/L	43	n-Propylbenzene	ND	1.0	μg/L
9	trans-1,2-Dichloroethene	ND	1.0	μg/L	44	4-Chlorotoluene	ND	1.0	μg/L
10	1,1-Dichloroethane	ND	1.0	μg/L	45	2-Chlorotoluene	ND	1.0	μg/L
11	cis-1,2-Dichloroethene	ND	1.0	μg/L	46	1,3,5-Trimethylbenzene	ND	1.0	μg/L
12	Bromochloromethane	ND	1.0	μg/L	47	tert-Butylbenzene	ND	1.0	μg/L
13	Chloroform	ND	1.0	μg/L	48	1,2,4-Trimethylbenzene	ND	1.0	μg/L
14	2,2-Dichloropropane	ND	1.0	μg/L	49	sec-Butylbenzene	ND	1.0	μg/L
15	1,2-Dichloroethane	ND	1.0	μg/L	50	1,3-Dichlorobenzene	ND	1.0	μg/L
16	1,1,1-Trichloroethane	ND	1.0	μg/L	51	1,4-Dichlorobenzene	ND	1.0	μg/L
17	1,1-Dichloropropene	ND	1.0	μg/L	52	4-Isopropyltoluene	ND	1.0	μg/L
18	Carbon tetrachloride	ND	1.0	μg/L	53	1,2-Dichlorobenzene	ND	1.0	μg/L
19	Benzene	ND	1.0	μg/L	54	n-Butylbenzene	ND	1.0	μg/L
20	Dibromomethane	ND	1.0	μg/L	55	1,2-Dibromo-3-chloropropane (DBCP) ND	3.0	μg/L
21	1,2-Dichloropropane	ND	1.0	μg/L	56	1,2,4-Trichlorobenzene	ND	2.0	μg/L
22	Trichloroethene	ND	1.0	μg/L	57	Naphthalene	ND	2.0	μg/L
23	Bromodichloromethane	ND	1.0	μg/L	58	Hexachlorobutadiene	ND	2.0	μg/L
24	cis-1,3-Dichloropropene	ND	1.0	μg/L	59	1,2,3-Trichlorobenzene	ND	2.0	μg/L
25	trans-1,3-Dichloropropene	ND	1.0	μg/L	60	Surr: 1,2-Dichloroethane-d4	114		%REC
26	1,1,2-Trichloroethane	ND	1.0	μg/L	61	Surr: Toluene-d8	103		%REC
27	Toluene	ND	1.0	μg/L	62	Surr: 4-Bromofluorobenzene	95		%REC
28	1,3-Dichloropropane	ND	1.0	μg/L					
29	Dibromochloromethane	ND	1.0	μg/L					
30	1,2-Dibromoethane (EDB)	ND	2.0	μg/L					
31	Tetrachloroethene	39	1.0	μg/L					
32	1,1,1,2-Tetrachloroethane	ND	1.0	μg/L					
33	Chlorobenzene	ND	1.0	μg/L					
34	Ethylbenzene	ND	1.0	μg/L					
35	m,p-Xylene	ND	1.0	μg/L					

ND = Not Detected

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV16.

12/14/06 **Report Date**

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

URS Corporation 811 Grier Dr.

Las Vegas, NV 89119

26698724/ Maryland Square

Alpha Analytical Number: URS06120822-11A

Client I.D. Number: MW-5 AP-MS

Holly Woodward Attn: Phone: (702) 492-7922

Fax: (702) 492-9149

Sampled: 12/05/06 Received: 12/08/06

Analyzed: 12/11/06

Volatile Organics by GC/MS EPA Method SW8260B

			Reportir	ng .				Reportir	ng
	Compound	Concentration	Limit			Compound	Concentration	Limit	
1	Dichlorodifluoromethane	ND	1.0	μg/L	36	Bromoform	ND	1.0	μg/L
2	Chloromethane	ND	4.0	μg/L	37	Styrene	ND	1.0	μg/L
3	Vinyl chloride	ND	1.0	μg/L	38	o-Xylene	ND	1.0	μg/L
4	Chloroethane	ND	1.0	μg/L	39	1,1,2,2-Tetrachloroethane	ND	1.0	μg/L
5	Bromomethane	ND	4.0	μg/L	40	1,2,3-Trichloropropane	ND	4.0	μg/L
6	Trichlorofluoromethane	ND	1.0	μg/L	41	Isopropylbenzene	ND	1.0	μg/L
7	1,1-Dichloroethene	ND	1.0	μg/L	42	Bromobenzene	ND	1.0	μg/L
8	Dichloromethane	ND	4.0	μg/L	43	n-Propylbenzene	ND	1.0	μg/L
9	trans-1,2-Dichloroethene	ND	1.0	μg/L	44	4-Chlorotoluene	ND	1.0	μg/L
10	1,1-Dichloroethane	ND	1.0	μg/L	45	2-Chlorotoluene	ND	1.0	μg/L
11	cis-1,2-Dichloroethene	ND	1.0	μα/L	46	1,3,5-Trimethylbenzene	ND	1.0	μg/L
12	Bromochloromethane	ND	1.0	μg/L	47	tert-Butylbenzene	ND	1.0	μg/L
13	Chloroform	4.5	1.0	μg/L	48	1,2,4-Trimethylbenzene	ND	1.0	μg/L
14	2,2-Dichloropropane	ND	1.0	μg/L	49	sec-Butylbenzene	ND	1.0	μg/L
15	1,2-Dichloroethane	ND	1.0	μg/L	50	1.3-Dichlorobenzene	ND	1.0	μg/L
16	1,1,1-Trichloroethane	ND	1.0	μg/L	51	1,4-Dichlorobenzene	ND	1.0	μg/L
17	1,1-Dichloropropene	ND	1.0	μg/L	52	4-Isopropyltoluene	ND	1.0	μg/L
18	Carbon tetrachloride	ND	1.0	μg/L	53	1,2-Dichlorobenzene	ND	1.0	μg/L
19	Benzene	ND	1.0	μg/L	54	n-Butylbenzene	ND	1.0	μg/L
20	Dibromomethane	ND	1.0	μg/L	55	1,2-Dibromo-3-chloropropane (DBCP)) ND	6.0	μg/L
21	1,2-Dichloropropane	ND	1.0	μg/L	56	1,2,4-Trichlorobenzene	ND	4.0	μg/L
22	Trichloroethene	ND	1.0	μg/L	57	Naphthalene	ND	4.0	μg/L
23	Bromodichloromethane	ND	1.0	μg/L	58	Hexachlorobutadiene	ND	4.0	μg/L
24	cis-1,3-Dichloropropene	ND	1.0	μg/L	59	1,2,3-Trichlorobenzene	ND	4.0	μg/L
25	trans-1,3-Dichloropropene	ND	1.0	μg/L	60	Surr: 1,2-Dichloroethane-d4	107		%REC
26	1,1,2-Trichloroethane	ND	1.0	μg/L	61	Surr: Toluene-d8	108		%REC
27	Toluene	ND	1.0	μg/L	62	Surr: 4-Bromofluorobenzene	94		%REC
28	1,3-Dichloropropane	ND	1.0	μg/L					
29	Dibromochloromethane	ND	1.0	μg/L					
30	1,2-Dibromoethane (EDB)	ND	4.0	μg/L					
31	Tetrachloroethene	130	1.0	μg/L					
32	1,1,1,2-Tetrachloroethane	ND	1.0	μg/L					
33	Chlorobenzene	ND	1.0	μg/L					
34	Ethylbenzene	ND	1.0	μg/L					

Some Reporting Limits were increased due to high concentrations of target analytes.

ND

ND = Not Detected

35 m,p-Xylene

Roger Scholl Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV16.

μg/L

12/14/06

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

URS Corporation 811 Grier Dr.

Las Vegas, NV 89119

Job#: 26698724/ Maryland Square

Alpha Analytical Number: URS06120822-12A

Client I.D. Number: MW-9 AP-MS

Holly Woodward Attn:

Phone: (702) 492-7922

(702) 492-9149 Fax:

Sampled: 12/06/06

Received: 12/08/06 Analyzed: 12/11/06

Volatile Organics by GC/MS EPA Method SW8260B

			Reportir	ng				Reportin	g
	Compound	Concentration	Limit		-	Compound	Concentration	Limit	
1	Dichlorodifluoromethane	ND	1.0	μg/L	36	Bromoform	ND	1.0	μg/L
2	Chloromethane	ND	2.0	μg/L	37	Styrene	ND	1.0	μg/L
3	Vinyl chloride	ND	1.0	μg/L	38	o-Xylene	ND	1.0	μg/L
4	Chloroethane	ND	1.0	μg/L	39	1,1,2,2-Tetrachloroethane	ND	1.0	μg/L
5	Bromomethane	ND	2.0	μg/L	40	1,2,3-Trichloropropane	ND ·	2.0	μg/L
6	Trichlorofluoromethane	ND	1.0	μg/L	41	Isopropylbenzene	ND	1.0	μg/L
7	1,1-Dichloroethene	ND	1.0	μg/L	42	Bromobenzene	ND	1.0	μg/L
8	Dichloromethane	ND	2.0	μg/L	43	n-Propylbenzene	ND	1.0	μg/L
9	trans-1,2-Dichloroethene	ND	1.0	μg/L	44	4-Chlorotoluene	ND	1.0	μg/L
10	1,1-Dichloroethane	ND	1.0	μg/L	45	2-Chlorotoluene	ND	1.0	μg/L
11	cis-1,2-Dichloroethene	ND	1.0	μg/L	46	1,3,5-Trimethylbenzene	ND	1.0	μg/L
12	Bromochloromethane	ND	1.0	μg/L	47	tert-Butylbenzene	ND	1.0	μg/L
13	Chloroform	ND	1.0	μg/L	48	1,2,4-Trimethylbenzene	ND	1.0	μg/L
14	2,2-Dichloropropane	ND	1.0	μg/L	49	sec-Butylbenzene	ND	1.0	μg/L
15	1,2-Dichloroethane	ND	1.0	μg/L	50	1,3-Dichlorobenzene	ND	1.0	μg/L
16	1,1,1-Trichloroethane	? ND	1.0	μg/L	51	1,4-Dichlorobenzene	ND	1.0	μg/L
17	1,1-Dichloropropene	ND	1.0	μg/L	52	4-Isopropyltoluene	ND	1.0	μg/L
18	Carbon tetrachloride	ND	1.0	μg/L	53	1,2-Dichlorobenzene	ND	1.0	μg/L
19	Benzene	ND	1.0	μg/L	54	n-Butylbenzene	ND	1.0	μg/L
20	Dibromomethane	ND	1.0	μg/L	55	1,2-Dibromo-3-chloropropane (DBCP) ND	3.0	μg/L
21	1,2-Dichloropropane	ND	1.0	µg/L	56	1,2,4-Trichlorobenzene	ND	2.0	μg/L
22	Trichloroethene	ND	1.0	μg/L	57	Naphthalene	ND	2.0	μg/L
23	Bromodichloromethane	ND	1.0	μg/L	58	Hexachlorobutadiene	ND	2.0	μg/L
24	cis-1,3-Dichloropropene	ND	1.0	μg/L	59	1,2,3-Trichlorobenzene	ND	2.0	μg/L
25	trans-1,3-Dichloropropene	ND	1.0	μg/L	60	Surr: 1,2-Dichloroethane-d4	119		%REC
26	1,1,2-Trichloroethane	ND	1.0	μg/L	61	Surr: Toluene-d8	102		%REC
27	Toluene	ND	1.0	μg/L	62	Surr: 4-Bromofluorobenzene	95		%REC
28	1,3-Dichloropropane	ND	1.0	μg/L					
29	Dibromochloromethane	ND	1.0	μg/L					
30	1,2-Dibromoethane (EDB)	ND	2.0	μg/L					
31	Tetrachloroethene	45	1.0	μg/L					
32	1,1,1,2-Tetrachloroethane	ND	1.0	μg/L					
33	Chlorobenzene	ND	1.0	μg/L					
34	Ethylbenzene	ND	1.0	μg/L					
35	m,p-Xylene	ND	1.0	μg/L					

ND = Not Detected

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV16.

12/14/06

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

URS Corporation 811 Grier Dr.

Las Vegas, NV 89119

26698724/ Maryland Square

Alpha Analytical Number: URS06120822-13A

Client I.D. Number: MW-27 AP-MS

Holly Woodward Attn: Phone: (702) 492-7922

(702) 492-9149 Fax:

Sampled: 12/06/06

Received: 12/08/06 Analyzed: 12/11/06

Volatile Organics by GC/MS EPA Method SW8260B

			Reportir	ng				Reportir	ng
	Compound	Concentration	Limit			Compound	Concentration	Limit	
1	Dichlorodifluoromethane	ND	5.0	μg/L	36	Bromoform	ND	5.0	μg/L
2	Chloromethane	ND	20	μg/L	37	Styrene	ND	5.0	μg/L
3	Vinyl chloride	ND	5.0	μg/L	38	o-Xylene	ND	2.5	μg/L
4	Chloroethane	ND	5.0	μg/L	39	1,1,2,2-Tetrachloroethane	ND	5.0	μg/L
5	Bromomethane	ND	20	μg/L	40	1,2,3-Trichloropropane	ND	20	μg/L
6	Trichlorofluoromethane	ND	5.0	μg/L	41	Isopropylbenzene	ND	5.0	μg/L
7	1,1-Dichloroethene	ND	5.0	μg/L	42	Bromobenzene	ND	5.0	μg/L
8	Dichloromethane	ND	20	μg/L	43	n-Propylbenzene	ND	5.0	μg/L
9	trans-1,2-Dichloroethene	ND	5.0	μg/L	44	4-Chlorotoluene	ND	5.0	μg/L
10	1,1-Dichloroethane	ND	5.0	μg/L	45	2-Chlorotoluene	ND	5.0	μg/L
11	cis-1,2-Dichloroethene	ND	5.0	μg/L	46	1,3,5-Trimethylbenzene	ND	5.0	μg/L
12	Bromochloromethane	ND	5.0	μg/L	47	tert-Butylbenzene	ND	5.0	μg/L
13	Chloroform	9.4	5.0	μg/L	48	1,2,4-Trimethylbenzene	ND	5.0	μg/L
14	2,2-Dichloropropane	ND	5.0	μg/L	49	sec-Butylbenzene	ND	5.0	μg/L
15	1,2-Dichloroethane	ND	5.0	μg/L	50	1,3-Dichlorobenzene	ND	5.0	μg/L
16	1,1,1-Trichloroethane	ND	5.0	μg/L	51	1,4-Dichlorobenzene	ND	5.0	μg/L
17	1,1-Dichloropropene	ND	5.0	μg/L	52	4-Isopropyltoluene	ND	5.0	μg/L
18	Carbon tetrachloride	ND	5.0	μg/L	53	1,2-Dichlorobenzene	ND	5.0	μg/L
19	Benzene	ND	2.5	μg/L	54	n-Butylbenzene	ND	5.0	μg/L
20	Dibromomethane	ND	5.0	μg/L	55	1,2-Dibromo-3-chloropropane (DBCP)) ND	30	μg/L
21	1,2-Dichloropropane	ND	5.0	μg/L	56	1,2,4-Trichlorobenzene	ND	20	μg/L
22	Trichloroethene	ND	5.0	μg/L	57	Naphthalene	ND	20	μg/L
23	Bromodichloromethane	ND	5.0	μg/L	58	Hexachlorobutadiene	ND	20	μg/L
24	cis-1,3-Dichloropropene	ND	5.0	μg/L	59	1,2,3-Trichlorobenzene	ND	20	μg/L
25	trans-1,3-Dichloropropene	ND	5.0	μg/L	60	Surr: 1,2-Dichloroethane-d4	104		%REC
26	1,1,2-Trichloroethane	ND	5.0	μg/L	61	Surr: Toluene-d8	104		%REC
27	Toluene	ND	2.5	μg/L	62	Surr: 4-Bromofluorobenzene	99		%REC
28	1,3-Dichloropropane	ND	5.0	μg/L					
29	Dibromochloromethane	ND	5.0	μg/L					
30	1,2-Dibromoethane (EDB)	ND	20	μg/L					
31	Tetrachloroethene	380	5.0	μg/L					
32	1,1,1,2-Tetrachloroethane	ND	5.0	μg/L					
33	Chlorobenzene	ND	5.0	μg/L					
34	Ethylbenzene	ND	2.5	μg/L					
35	m,p-Xylene	ND	2.5	μg/L					

Reporting Limits were increased due to high concentrations of target analytes.

ND = Not Detected

Roger Scholl Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV16. 12/14/06

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

URS Corporation 811 Grier Dr.

Las Vegas, NV 89119

Job#: 26698724/ Maryland Square

Alpha Analytical Number: URS06120822-14A

Client I.D. Number: MW-19 AP-MS

Attn: Holly Woodward Phone: (702) 492-7922

Fax: (702) 492-9149

Sampled: 12/06/06 Received: 12/08/06

Analyzed: 12/11/06

Volatile Organics by GC/MS EPA Method SW8260B

			Reportir	ng				Reportin	ng
	Compound	Concentration	Limit			Compound	Concentration	Limit	
1	Dichlorodifluoromethane	ND	10	μg/L	36	Bromoform	ND	10	μg/L
2	Chloromethane	ND	40	μg/L	37	Styrene	ND	10	μg/L
3	Vinyl chloride	ND	10	μg/L	38	o-Xylene	ND	5.0	μg/L
4	Chloroethane	ND	10	μg/L	39	1,1,2,2-Tetrachloroethane	ND	10	μg/L
5	Bromomethane	ND	40	μg/L	40	1,2,3-Trichloropropane	ND	40	μg/L
6	Trichlorofluoromethane	ND	10	μg/L	41	Isopropylbenzene	ND	10	μg/L
7	1,1-Dichloroethene	ND	10	μg/L	42	Bromobenzene	ND	10	μg/L
8	Dichloromethane	ND	40	μg/L	43	n-Propylbenzene	ND	10	μg/L
9	trans-1,2-Dichloroethene	ND	10	μg/L	44	4-Chlorotoluene	ND	10	μg/L
10	1,1-Dichloroethane	ND	10	μg/L	45	2-Chlorotoluene	ND	10	μg/L
11	cis-1,2-Dichloroethene	ND	10	μg/L	46	1,3,5-Trimethylbenzene	ND	10	μg/L
12	Bromochloromethane	ND	10	μg/L	47	tert-Butylbenzene	ND	10	μg/L
13	Chloroform	ND	10	μg/L	48	1,2,4-Trimethylbenzene	ND	10	μg/L
14	2,2-Dichloropropane	ND	10	μg/L	49	sec-Butylbenzene	ND	10	μg/L
15	1,2-Dichloroethane	ND	10	μg/L	50	1,3-Dichlorobenzene	ND	10	μg/L
16	1,1,1-Trichloroethane	ND	10	μg/L	51	1,4-Dichlorobenzene	ND	10	μg/L
17	1,1-Dichloropropene	ND	10	μg/L	52	4-Isopropyltoluene	ND	10	μg/L
18	Carbon tetrachloride	ND	10	μg/L	53	1,2-Dichlorobenzene	ND	10	μg/L
19	Benzene	ND	5.0	μg/L	54	n-Butylbenzene	ND	10	μg/L
20	Dibromomethane	ND	10	μg/L	55	1,2-Dibromo-3-chloropropane (DBCP)) ND	60	μg/L
21	1,2-Dichloropropane	ND	10	μg/L	56	1,2,4-Trichlorobenzene	ND	40	μg/L
22	Trichloroethene	ND	10	μg/L	57	Naphthalene	ND	40	μg/L
23	Bromodichloromethane	ND	10	μg/L	58	Hexachlorobutadiene	ND	40	μg/L
24	cis-1,3-Dichloropropene	ND	10	μg/L	59	1,2,3-Trichlorobenzene	ND	40	μg/L
25	trans-1,3-Dichloropropene	ND	10	μg/L	60	Surr: 1,2-Dichloroethane-d4	115		%REC
26	1,1,2-Trichloroethane	ND	10	μg/L	61	Surr: Toluene-d8	103		%REC
27	Toluene	ND	5.0	μg/L	62	Surr: 4-Bromofluorobenzene	99		%REC
28	1,3-Dichloropropane	ND	10	μg/L					
29	Dibromochloromethane	ND	10	μg/L					
30	1,2-Dibromoethane (EDB)	ND	40	μg/L					
31	Tetrachloroethene	1,200	10	μg/L					
32	1,1,1,2-Tetrachloroethane	ND ·	10	μg/L					
33	Chlorobenzene	ND	10	μg/L					
34	Ethylbenzene	ND	5.0	μg/L					
35	m,p-Xylene	ND	5.0	μg/L					

Reporting Limits were increased due to high concentrations of target analytes.

ND = Not Detected

Roger Scholl Kandy Sudmer

Walter Horiham

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV16.

12/14/06

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

 URS Corporation
 Attn:
 Holly Woodward

 811 Grier Dr.
 Phone:
 (702) 492-7922

 Las Vegas, NV 89119
 Fax:
 (702) 492-9149

Job#: 26698724/ Maryland Square

Alpha Analytical Number: URS06120822-15A Sampled: 12/06/06 Client I.D. Number: MW-17 AP-MS Received: 12/08/06

Analyzed: 12/11/06

Volatile Organics by GC/MS EPA Method SW8260B

				ıg				Reporting	
	Compound	Concentration	Limit			Compound	Concentration	Limit	
1	Dichlorodifluoromethane	ND	10	μg/L	36	Bromoform	ND	10	μg/L
2	Chloromethane	ND	40	μg/L	37	Styrene	ND	10	μg/L
3	Vinyl chloride	ND	10	μg/L	38	o-Xylene	ND	5.0	μg/L
4	Chloroethane	ND	10	μg/L	39	1,1,2,2-Tetrachloroethane	ND	10	μg/L
5	Bromomethane	ND	40	μg/L	40	1,2,3-Trichloropropane	ND	40	μg/L
6	Trichlorofluoromethane	ND	10	μg/L	41	Isopropylbenzene	ND	10	μg/L
7	1,1-Dichloroethene	ND	10	μg/L	42	Bromobenzene	ND	10	μg/L
8	Dichloromethane	ND	40	μg/L	43	n-Propylbenzene	ND	10	μg/L
9	trans-1,2-Dichloroethene	ND	10	μg/L	44	4-Chlorotoluene	ND	10	μg/L
10	1,1-Dichloroethane	ND	10	μg/L	45	2-Chlorotoluene	ND	10	μg/L
11	cis-1,2-Dichloroethene	ND	10	μg/L	46	1,3,5-Trimethylbenzene	ND	10	μg/L
12	Bromochloromethane	ND	10	μg/L	47	tert-Butylbenzene	ND	10	μg/L
13	Chloroform	ND	10	μg/L	48	1,2,4-Trimethylbenzene	ND	10	μg/L
14	2,2-Dichloropropane	ND	10	μg/L	49	sec-Butylbenzene	ND	10	μg/L
15	1,2-Dichloroethane	ND	10	μg/L	50	1,3-Dichlorobenzene	ND	10	μg/L
16	1,1,1-Trichloroethane	ND	10	μg/L	51	1,4-Dichlorobenzene	ND	10	μg/L
17	1,1-Dichloropropene	ND	10	μg/L	52	4-Isopropyltoluene	ND	10	μg/L
18	Carbon tetrachloride	ND	10	μg/L	53	1,2-Dichlorobenzene	ND	10	μg/L
19	Benzene	ND	5.0	μg/L	54	n-Butylbenzene	ND	10	μg/L
20	Dibromomethane	ND	10	μg/L	55	1,2-Dibromo-3-chloropropane (DBCP		60	μg/L
21	1,2-Dichloropropane	ND	10	μg/L	56	1,2,4-Trichlorobenzene	ND	40	μg/L
22	Trichloroethene	ND	10	μg/L	57	Naphthalene	ND	40	μg/L
23	Bromodichloromethane	ND	10	μg/L	58	Hexachlorobutadiene	ND	40	μg/L
24	cis-1,3-Dichloropropene	ND	10	μg/L	59	1,2,3-Trichlorobenzene	ND	40	μg/L
25	trans-1,3-Dichloropropene	ND	10	μg/L	60	Surr: 1,2-Dichloroethane-d4	121		%REC
26	1,1,2-Trichloroethane	ND	10	μg/L	61	Surr: Toluene-d8	101		%REC
27	Toluene	ND	5.0	μg/L	62	Surr: 4-Bromofluorobenzene	97		%REC
28	1,3-Dichloropropane	ND	10	μg/L					
29	Dibromochloromethane	ND	10	μg/L					
30	1,2-Dibromoethane (EDB)	ND	40	μg/L					

Reporting Limits were increased due to high concentrations of target analytes.

710

ND

ND

ND

ND

ND = Not Detected

Tetrachloroethene

Chlorobenzene

Ethylbenzene

m,p-Xylene

1,1,1,2-Tetrachloroethane

31

32

34

Roger Scholl Nandy Saulaur Water Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

μg/L

μg/L

μg/L

μg/L

10

5.0

Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV16.

12/14/06

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

URS Corporation 811 Grier Dr. Las Vegas, NV 89119

Job#: 26698724/ Maryland Square

Alpha Analytical Number: URS06120822-16A

Client I.D. Number: MW-25 AP-MS

Attn: Holly Woodward Phone: (702) 492-7922

Fax: (702) 492-9149

Sampled: 12/06/06 Received: 12/08/06

Analyzed: 12/11/06

Volatile Organics by GC/MS EPA Method SW8260B

			Reportir	ng				Reportir	ng
	Compound	Concentration	Limit			Compound	Concentration	Limit	
1	Dichlorodifluoromethane	ND	10	μg/L	36	Bromoform	ND	10	μg/L
2	Chloromethane	ND ·	40	μg/L	37	Styrene	ND	10	μg/L
3	Vinyl chloride	ND	10	μg/L	38	o-Xylene	ND	5.0	μg/L
4	Chloroethane	ND	10	μg/L	39	1,1,2,2-Tetrachloroethane	ND	10	μg/L
5	Bromomethane	ND	40	μg/L	40	1,2,3-Trichloropropane	ND	40	μg/L
6	Trichlorofluoromethane	ND	10	μg/L	41	Isopropylbenzene	ND	10	μg/L
7	1,1-Dichloroethene	ND	10	μg/L	42	Bromobenzene	ND	10	μg/L
8	Dichloromethane	ND	40	μg/L	43	n-Propylbenzene	ND	10	μg/L
9	trans-1,2-Dichloroethene	ND	10	μg/L	44	4-Chlorotoluene	ND	10	μg/L
10	1,1-Dichloroethane	ND	10	μg/L	45	2-Chlorotoluene	ND	10	μg/L
11	cis-1,2-Dichloroethene	ND	10	μg/L	46	1,3,5-Trimethylbenzene	ND	10	μg/L
12	Bromochloromethane	ND	10	μg/L	47	tert-Butylbenzene	ND	10	μg/L
13	Chloroform	ND	10	μg/L	48	1,2,4-Trimethylbenzene	ND	10	μg/L
14	2,2-Dichloropropane	ND	10	μg/L	49	sec-Butylbenzene	ND	10	μg/L
15	1,2-Dichloroethane	ND	10	μg/L	50	1,3-Dichlorobenzene	ND	10	μg/L
16	1,1,1-Trichloroethane	ND	10	μg/L	51	1,4-Dichlorobenzene	ND	10	μg/L
17	1,1-Dichloropropene	ND	10	μg/L	52	4-Isopropyltoluene	ND	10	μg/L
18	Carbon tetrachloride	ND	10	μg/L	53	1,2-Dichlorobenzene	ND	10	μg/L
19	Benzene	ND	5.0	μg/L	54	n-Butylbenzene	ND	10	μg/L
20	Dibromomethane	ND	10	μg/L	55	1,2-Dibromo-3-chloropropane (DBCP) ND	60	μg/L
21	1,2-Dichloropropane	ND	10	μg/L	56	1,2,4-Trichlorobenzene	ND	40	μg/L
22	Trichloroethene	ND	10	μg/L	57	Naphthalene	ND	40	μg/L
23	Bromodichloromethane	ND	10	μg/L	58	Hexachlorobutadiene	ND	40	μg/L
24	cis-1,3-Dichloropropene	ND	10	μg/L	59	1,2,3-Trichlorobenzene	ND	40	μg/L
25	trans-1,3-Dichloropropene	ND	10	μg/L	60	Surr: 1,2-Dichloroethane-d4	111		%REC
26	1,1,2-Trichloroethane	ND	10	μg/L	61	Surr: Toluene-d8	103		%REC
27	Toluene	ND	5.0	μg/L	62	Surr: 4-Bromofluorobenzene	102		%REC
28	1,3-Dichloropropane	ND	10	μg/L					
29	Dibromochloromethane	ND	10	μg/L					
30	1,2-Dibromoethane (EDB)	ND	40	μg/L					
31	Tetrachloroethene	1,200	10	μg/L					

Reporting Limits were increased due to high concentrations of target analytes.

ND = Not Detected

32 1,1,1,2-Tetrachloroethane

Chlorobenzene

Ethylbenzene

m,p-Xylene

Roger Scholl Kandy Salm

ND

ND

ND

ND

Walter Hirihour

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

μg/L

μg/L

5.0

Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV16.

12/14/06

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

URS Corporation 811 Grier Dr.

Las Vegas, NV 89119

Job#: 26698724/ Maryland Square

Alpha Analytical Number: URS06120822-17A

Client I.D. Number: MW-6 AP-MS

Attn: Holly Woodward Phone: (702) 492-7922

Fax: (702) 492-9149

Sampled: 12/07/06 Received: 12/08/06

Analyzed: 12/11/06

Volatile Organics by GC/MS EPA Method SW8260B

			Reportir	ng				Reportir	ng
-	Compound	Concentration	Limit			Compound	Concentration	Limit	
1	Dichlorodifluoromethane	ND	5.0	μg/L	36	Bromoform	ND	5.0	μg/L
2	Chloromethane	ND	20	μg/L	37	Styrene	ND	5.0	μg/L
3	Vinyl chloride	5.1	5.0	μg/L	38	o-Xylene	ND	2.5	μg/L
4	Chloroethane	ND	5.0	μg/L	39	1,1,2,2-Tetrachloroethane	ND	5.0	μg/L
5	Bromomethane	ND	20	μg/L	40	1,2,3-Trichloropropane	ND	20	μg/L
6	Trichlorofluoromethane	ND	5.0	μg/L	41	Isopropylbenzene	ND	5.0	μg/L
7	1,1-Dichloroethene	ND	5.0	μg/L	42	Bromobenzene	ND	5.0	μg/L
8	Dichloromethane	ND	20	μg/L	43	n-Propylbenzene	ND	5.0	μg/L
9	trans-1,2-Dichloroethene	ND	5.0	μg/L	44	4-Chlorotoluene	ND	5.0	μg/L
10	1,1-Dichloroethane	ND	5.0	μg/L	45	2-Chlorotoluene	ND	5.0	μg/L
11	cis-1,2-Dichloroethene	8.9	5.0	μg/L	46	1,3,5-Trimethylbenzene	ND	5.0	μg/L
12	Bromochloromethane	ND	5.0	μg/L	47	tert-Butylbenzene	ND	5.0	μg/L
13	Chloroform	ND	5.0	μg/L	48	1,2,4-Trimethylbenzene	ND	5.0	μg/L
14	2,2-Dichloropropane	ND	5.0	μg/L	49	sec-Butylbenzene	ND	5.0	μg/L
15	1,2-Dichloroethane	ND	5.0	μg/L	50	1,3-Dichlorobenzene	ND	5.0	μg/L
16	1,1,1-Trichloroethane	ND	5.0	μg/L	51	1,4-Dichlorobenzene	ND	5.0	μg/L
17	1,1-Dichloropropene	ND	5.0	μg/L	52	4-Isopropyltoluene	ND	5.0	μg/L
18	Carbon tetrachloride	ND	5.0	μg/L	53	1,2-Dichlorobenzene	ND	5.0	μg/L
19	Benzene	ND	2.5	μg/L	54	n-Butylbenzene	ND	5.0	μg/L
20	Dibromomethane	ND	5.0	μg/L	55	1,2-Dibromo-3-chloropropane (DBCP) ND	30	μg/L
21	1,2-Dichloropropane	ND	5.0	μg/L	56	1,2,4-Trichlorobenzene	ND	20	μg/L
22	Trichloroethene	9.9	5.0	μg/L	57	Naphthalene	ND	20	μg/L
23	Bromodichloromethane	ND	5.0	μg/L	58	Hexachlorobutadiene	ND	20	μg/L
24	cis-1,3-Dichloropropene	ND	5.0	μg/L	59	1,2,3-Trichlorobenzene	ND	20	μg/L
25	trans-1,3-Dichloropropene	ND	5.0	μg/L	60	Surr: 1,2-Dichloroethane-d4	116		%REC
26	1,1,2-Trichloroethane	ND	5.0	μg/L	61	Surr: Toluene-d8	100		%REC
27	Toluene	ND	2.5	μg/L	62	Surr: 4-Bromofluorobenzene	101		%REC
28	1,3-Dichloropropane	ND	5.0	μg/L					
29	Dibromochloromethane	ND	5.0	μg/L					
30	1,2-Dibromoethane (EDB)	ND	20	μg/L					
31	Tetrachloroethene	810	5.0	μg/L					
32	1,1,1,2-Tetrachloroethane	ND	5.0	μg/L					
33	Chlorobenzene	ND	5.0	μg/L					
34	Ethylbenzene	ND	2.5	μg/L					
35	m,p-Xylene	ND	2.5	μg/L					

Reporting Limits were increased due to high concentrations of target analytes.

ND = Not Detected

Roger Scholl Kandy Salm

Walter Hirkon

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV16.

12/14/06

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

URS Corporation 811 Grier Dr.

Las Vegas, NV 89119

26698724/ Maryland Square Alpha Analytical Number: URS06120822-18A

Client I.D. Number: MW-1 AP-MS

Holly Woodward Attn: Phone: (702) 492-7922

Fax:

(702) 492-9149

Sampled: 12/07/06 Received: 12/08/06

Analyzed: 12/11/06

Volatile Organics by GC/MS EPA Method SW8260B

		Reportir	ng				Reportir	ng	
	Compound	Concentration	Limit			Compound	Concentration	Limit	
1	Dichlorodifluoromethane	ND	10	μg/L	36	Bromoform	ND	10	μg/L
2	Chloromethane	ND	40	μg/L	37	Styrene	ND	10	μg/L
3	Vinyl chloride	ND	10	μg/L	38	o-Xylene	ND	5.0	μg/L
4	Chloroethane	ND	10	μg/L	39	1,1,2,2-Tetrachloroethane	ND	10	μg/L
5	Bromomethane	ND	40	μg/L	40	1,2,3-Trichloropropane	ND	40	μg/L
6	Trichlorofluoromethane	ND	10	μg/L	41	Isopropylbenzene	ND	10	μg/L
7	1,1-Dichloroethene	ND	10	μg/L	42	Bromobenzene	ND	10	μg/L
8	Dichloromethane	ND	40	μg/L	43	n-Propylbenzene	ND	10	μg/L
9	trans-1,2-Dichloroethene	ND	10	μg/L	44	4-Chlorotoluene	ND	10	μg/L
10	1,1-Dichloroethane	ND	10	μg/L	45	2-Chlorotoluene	ND	10	μg/L
11	cis-1,2-Dichloroethene	ND	10	μg/L	46	1,3,5-Trimethylbenzene	ND	10	μg/L
12	Bromochloromethane	ND	10	μg/L	47	tert-Butylbenzene	ND	10	μg/L
13	Chloroform	ND	10	μg/L	48	1,2,4-Trimethylbenzene	ND	10	μg/L
14	2,2-Dichloropropane	ND	10	μg/L	49	sec-Butylbenzene	ND	10	μg/L
15	1,2-Dichloroethane	ND	10	μg/L	50	1,3-Dichlorobenzene	ND	10	μg/L
16	1,1,1-Trichloroethane	ND	10	μg/L	51	1,4-Dichlorobenzene	ND	10	μg/L
17	1,1-Dichloropropene	ND	10	μg/L	52	4-Isopropyltoluene	ND	10	μg/L
18	Carbon tetrachloride	ND	10	μg/L	53	1,2-Dichlorobenzene	ND	10	μg/L
19	Benzene	ND	5.0	μg/L	54	n-Butylbenzene	ND	10	μg/L
20	Dibromomethane	ND	10	μg/L	55	1,2-Dibromo-3-chloropropane (DBCP) ND	60	μg/L
21	1,2-Dichloropropane	ND	10	µg/L	56	1,2,4-Trichlorobenzene	ND	40	μg/L
22	Trichloroethene	ND	10	μg/L	57	Naphthalene	ND	40	μg/L
23	Bromodichloromethane	ND	10	μg/L	58	Hexachlorobutadiene	ND	40	μg/L
24	cis-1,3-Dichloropropene	ND	10	μg/L	59	1,2,3-Trichlorobenzene	ND	40	μg/L
25	trans-1,3-Dichloropropene	ND	10	μg/L	60	Surr: 1,2-Dichloroethane-d4	108		%REC
26	1,1,2-Trichloroethane	ND	10	μg/L	61	Surr: Toluene-d8	107		%REC
27	Toluene	ND	5.0	μg/L	62	Surr: 4-Bromofluorobenzene	93		%REC
28	1,3-Dichloropropane	ND	10	μg/L					
29	Dibromochloromethane	ND	10	μg/L					
30	1,2-Dibromoethane (EDB)	ND	40	μg/L					
31	Tetrachloroethene	1,300	10	μg/L					
32	1,1,1,2-Tetrachloroethane	ND	10	μg/L					
33	Chlorobenzene	ND	10	μg/L					
34	Ethylbenzene	ND	5.0	μg/L					
35	m,p-Xylene	ND	5.0	μg/L					

Reporting Limits were increased due to high concentrations of target analytes.

ND = Not Detected

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV16.

12/14/06

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

URS Corporation 811 Grier Dr.

Las Vegas, NV 89119

26698724/ Maryland Square

Alpha Analytical Number: URS06120822-19A

Client I.D. Number: MW-14 AP-MS

Holly Woodward Attn: Phone: (702) 492-7922

Fax: (702) 492-9149

Sampled: 12/07/06 Received: 12/08/06

Analyzed: 12/11/06

Volatile Organics by GC/MS EPA Method SW8260B

			Reportir	ng				Reportir	ng
	Compound	Concentration	Limit			Compound	Concentration	Limit	
1	Dichlorodifluoromethane	ND	30	µg/L	36	Bromoform	ND	30	μg/L
2	Chloromethane	ND	120	μg/L	37	Styrene	ND	30	μg/L
3	Vinyl chloride	ND	30	μg/L	38	o-Xylene	ND	15	μg/L
4	Chloroethane	ND	30	μg/L	39	1,1,2,2-Tetrachloroethane	ND	30	μg/L
5	Bromomethane	ND	120	μg/L	40	1,2,3-Trichloropropane	ND	120	μg/L
6	Trichlorofluoromethane	ND	30	μg/L	41	Isopropylbenzene	ND	30	μg/L
7	1,1-Dichloroethene	ND	30	μg/L	42	Bromobenzene	ND	30	μg/L
8	Dichloromethane	ND	120	μg/L	43	n-Propylbenzene	ND	30	μg/L
9	trans-1,2-Dichloroethene	ND	30	μg/L	44	4-Chlorotoluene	ND	30	μg/L
10	1,1-Dichloroethane	ND	30	μg/L	45	2-Chlorotoluene	ND	30	μg/L
11	cis-1,2-Dichloroethene	ND	30	μg/L	46	1,3,5-Trimethylbenzene	ND	30	μg/L
12	Bromochloromethane	ND	30	μg/L	47	tert-Butylbenzene	ND	30	μg/L
13	Chloroform	ND	30	μg/L	48	1,2,4-Trimethylbenzene	ND	30	μg/L
14	2,2-Dichloropropane	ND	30	μg/L	49	sec-Butylbenzene	ND	30	μg/L
15	1,2-Dichloroethane	ND	30	μg/L	50	1,3-Dichlorobenzene	ND	30	μg/L
16	1,1,1-Trichloroethane	ND	30	μg/L	51	1,4-Dichlorobenzene	ND	30	μg/L
17	1,1-Dichloropropene	ND	30	μg/L	52	4-Isopropyltoluene	ND	30	μg/L
18	Carbon tetrachloride	ND	30	μg/L	53	1,2-Dichlorobenzene	ND	30	μg/L
19	Benzene	ND	15	μg/L	54	n-Butylbenzene	ND	30	μg/L
20	Dibromomethane	ND	30	μg/L	55	1,2-Dibromo-3-chloropropane (DBCP) ND	180	μg/L
21	1,2-Dichloropropane	ND	30	μg/L	56	1,2,4-Trichlorobenzene	ND	120	μg/L
22	Trichloroethene	ND	30	μg/L	57	Naphthalene	ND	120	μg/L
23	Bromodichloromethane	ND	30	μg/L	58	Hexachlorobutadiene	ND	120	μg/L
24	cis-1,3-Dichloropropene	ND	30	μg/L	59	1,2,3-Trichlorobenzene	ND	120	μg/L
25	trans-1,3-Dichloropropene	ND	30	μg/L	60	Surr: 1,2-Dichloroethane-d4	107		%REC
26	1,1,2-Trichloroethane	ND	30	μg/L	61	Surr: Toluene-d8	102		%REC
27	Toluene	ND	15	μg/L	62	Surr: 4-Bromofluorobenzene	98		%REC
28	1,3-Dichloropropane	ND	30	μg/L					
29	Dibromochloromethane	ND	30	μg/L					
30	1,2-Dibromoethane (EDB)	ND	120	μg/L					
31	Tetrachloroethene	3,500	30	μg/L					
32	1,1,1,2-Tetrachloroethane	ND	30	μg/L					
33	Chlorobenzene	ND	30	μg/L					
34	Ethylbenzene	ND	15	μg/L					
35	m,p-Xylene	ND	15	μg/L					

Reporting Limits were increased due to high concentrations of target analytes.

ND = Not Detected

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer $Sacramento, CA \bullet (916)\ 366-9089\ /\ Las\ Vegas,\ NV \bullet (702)\ 281-4848\ /\ info@alpha-analytical.com$

Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV16.

12/14/06

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

URS Corporation 811 Grier Dr. Las Vegas, NV 89119

Job#: 26698724/ Maryland Square

Alpha Analytical Number: URS06120822-20A

Client I.D. Number: MW-2 AP-MS

Holly Woodward Attn: Phone: (702) 492-7922

Fax: (702) 492-9149

Sampled: 12/07/06 Received: 12/08/06

Analyzed: 12/11/06

Volatile Organics by GC/MS EPA Method SW8260B

			Reportir	ng				Reportir	ng
	Compound	Concentration	Limit			Compound	Concentration	Limit	
1	Dichlorodifluoromethane	ND	20	μg/L	36	Bromoform	ND	20	μg/L
2	Chloromethane	ND	80	μg/L	37	Styrene	ND	20	μg/L
3	Vinyl chloride	ND	20	μg/L	38	o-Xylene	ND	10	μg/L
4	Chloroethane	ND	20	μg/L	39	1,1,2,2-Tetrachloroethane	ND	20	μg/L
5	Bromomethane	ND	80	μg/L	40	1,2,3-Trichloropropane	ND	80	μg/L
6	Trichlorofluoromethane	ND	20	μg/L	41	Isopropylbenzene	ND	20	μg/L
7	1,1-Dichloroethene	ND	20	μg/L	42	Bromobenzene	ND	20	μg/L
8	Dichloromethane	ND	80	μg/L	43	n-Propylbenzene	ND	20	μg/L
9	trans-1,2-Dichloroethene	ND	20	μg/L	44	4-Chlorotoluene	ND	20	μg/L
10	1,1-Dichloroethane	ND	20	μg/L	45	2-Chlorotoluene	ND	20	μg/L
11	cis-1,2-Dichloroethene	ND	20	μg/L	46	1,3,5-Trimethylbenzene	ND	20	μg/L
12	Bromochloromethane	ND	20	μg/L	47	tert-Butylbenzene	ND	20	μg/L
13	Chloroform	ND	20	μg/L	48	1,2,4-Trimethylbenzene	ND	20	μg/L
14	2,2-Dichloropropane	ND	20	μg/L	49	sec-Butylbenzene	ND	20	μg/L
15	1,2-Dichloroethane	ND	20	μg/L	50	1,3-Dichlorobenzene	ND	20	μg/L
16	1,1,1-Trichloroethane	ND	20	μg/L	51	1,4-Dichlorobenzene	ND	20	μg/L
17	1,1-Dichloropropene	ND	20	μg/L	52	4-Isopropyltoluene	ND	20	μg/L
18	Carbon tetrachloride	ND	20	μg/L	53	1,2-Dichlorobenzene	ND	20	μg/L
19	Benzene	ND	10	μg/L	54	n-Butylbenzene	ND	20	μg/L
20	Dibromomethane	ND	20	μg/L	55	1,2-Dibromo-3-chloropropane (DBCP)) ND	120	μg/L
21	1,2-Dichloropropane	ND	20	μg/L	56	1,2,4-Trichlorobenzene	ND	80	μg/L
22	Trichloroethene	ND	20	μg/L	57	Naphthalene	ND	80	μg/L
23	Bromodichloromethane	ND	20	μg/L	58	Hexachlorobutadiene	ND	80	μg/L
24	cis-1,3-Dichloropropene	ND	20	μg/L	59	1,2,3-Trichlorobenzene	ND	80	μg/L
25	trans-1,3-Dichloropropene	ND	20	μg/L	60	Surr: 1,2-Dichloroethane-d4	118		%REC
26	1,1,2-Trichloroethane	ND	20	μg/L	61	Surr: Toluene-d8	99		%REC
27	Toluene	ND	10	μg/L	62	Surr: 4-Bromofluorobenzene	103		%REC
28	1,3-Dichloropropane	ND	20	μg/L					
29	Dibromochloromethane	ND	20	μg/L					
30	1,2-Dibromoethane (EDB)	ND	80	μg/L					
			1						

Reporting Limits were increased due to high concentrations of target analytes.

ND = Not Detected

Tetrachloroethene

Chlorobenzene

Ethylbenzene

m,p-Xylene

1,1,1,2-Tetrachloroethane

32

34

35

Roger Scholl

1,300

ND

ND

ND

ND

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer $Sacramento, CA \bullet (916)\ 366-9089\ /\ Las\ Vegas,\ NV \bullet (702)\ 281-4848\ /\ info@alpha-analytical.com$

20

20

10

μg/L

μg/L

μg/L

μg/L

Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV16.

12/14/06 Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

URS Corporation 811 Grier Dr.

Las Vegas, NV 89119

26698724/ Maryland Square

Alpha Analytical Number: URS06120822-21A

Client I.D. Number: MW-20 AP-MS

Holly Woodward Attn:

Phone: (702) 492-7922 Fax: (702) 492-9149

Sampled: 12/07/06 Received: 12/08/06

Analyzed: 12/12/06

Volatile Organics by GC/MS EPA Method SW8260B

			Reportir	ng				Reporti	ng
	Compound	Concentration	Limit			Compound	Concentration	Limit	
1	Dichlorodifluoromethane	ND	30	μg/L	36	Bromoform	ND	30	μg/L
2	Chloromethane	ND	120	μg/L	37	Styrene	ND	30	μg/L
3	Vinyl chloride	ND	30	μg/L	38	o-Xylene	ND	15	μg/L
4	Chloroethane	ND	30	μg/L	39	1,1,2,2-Tetrachloroethane	ND	30	μg/L
5	Bromomethane	ND	120	μg/L	40	1,2,3-Trichloropropane	ND	120	μg/L
6	Trichlorofluoromethane	ND	30	μg/L	41	Isopropylbenzene	ND	30	μg/L
7	1,1-Dichloroethene	ND	30	μg/L	42	Bromobenzene	ND	30	μg/L
8	Dichloromethane	ND	120	μg/L	43	n-Propylbenzene	ND	30	μg/L
9	trans-1,2-Dichloroethene	ND	30	μg/L	44	4-Chlorotoluene	ND	30	μg/L
10	1,1-Dichloroethane	ND	30	μg/L	45	2-Chlorotoluene	ND	30	μg/L
11	cis-1,2-Dichloroethene	ND	30	μg/L	46	1,3,5-Trimethylbenzene	ND	30	μg/L
12	Bromochloromethane	ND	30	μg/L	47	tert-Butylbenzene	ND	30	μg/L
13	Chloroform	ND	30	μg/L	48	1,2,4-Trimethylbenzene	ND	30	μg/L
14	2,2-Dichloropropane	ND	30	μg/L	49	sec-Butylbenzene	ND	30	μg/L
15	1,2-Dichloroethane	ND	30	μg/L	50	1,3-Dichlorobenzene	ND	30	μg/L
16	1,1,1-Trichloroethane	ND	30	μg/L	51	1,4-Dichlorobenzene	ND	30	μg/L
17	1,1-Dichloropropene	ND	30	μg/L	52	4-Isopropyltoluene	ND	30	μg/L
18	Carbon tetrachloride	ND	30	μg/L	53	1,2-Dichlorobenzene	ND	30	μg/L
19	Benzene	ND	15	μg/L	54	n-Butylbenzene	ND	30	μg/L
20	Dibromomethane	ND	30	μg/L	55	1,2-Dibromo-3-chloropropane (DBCP) ND	180	μg/L
21	1,2-Dichloropropane	ND	30	μg/L	56	1,2,4-Trichlorobenzene	ND	120	μg/L
22	Trichloroethene	ND	30	μg/L	57	Naphthalene	ND	120	μg/L
23	Bromodichloromethane	ND	30	μg/L	58	Hexachlorobutadiene	ND	120	μg/L
24	cis-1,3-Dichloropropene	ND	30	μg/L	59	1,2,3-Trichlorobenzene	ND	120	μg/L
25	trans-1,3-Dichloropropene	ND	30	μg/L	60	Surr: 1,2-Dichloroethane-d4	92		%REC
26	1,1,2-Trichloroethane	ND	30	μg/L	61	Surr: Toluene-d8	114	*	%REC
27	Toluene	ND	15	μg/L	62	Surr: 4-Bromofluorobenzene	86		%REC
28	1,3-Dichloropropane	ND	30	μg/L					
29	Dibromochloromethane	ND	30	μg/L					
30	1,2-Dibromoethane (EDB)	ND	120	μg/L					
31	Tetrachloroethene	2,500	30	μg/L					
32	1,1,1,2-Tetrachloroethane	ND	30	μg/L					
33	Chlorobenzene	ND	30	μg/L					
34	Ethylbenzene	ND	15	μg/L					
35	m,p-Xylene	ND	15	µg/L					

Reporting Limits were increased due to high concentrations of target analytes.

ND = Not Detected

Roger Scholl Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer

12/14/06

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV16.

Report Date

^{*}Toluene-d8 surrogate recovery was 114%, with 84-113% criteria. The other 2 surrogates met criteria.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

URS Corporation 811 Grier Dr.

Las Vegas, NV 89119

Job#: 26698724/ Maryland Square

Alpha Analytical Number: URS06120822-22A

Client I.D. Number: MW-23 AP-MS

Holly Woodward Attn: Phone: (702) 492-7922

Fax: (702) 492-9149

Sampled: 12/07/06 Received: 12/08/06

Analyzed: 12/12/06

Volatile Organics by GC/MS EPA Method SW8260B

			Reportir	ng				Reportir	ng
	Compound	Concentration	Limit	_		Compound	Concentration	Limit	
1	Dichlorodifluoromethane	ND	20	μg/L	36	Bromoform	ND	20	μg/L
2	Chloromethane	ND	80	μg/L	37	Styrene	ND	20	μg/L
3	Vinyl chloride	ND	20	μg/L	38	o-Xylene	ND	10	μg/L
4	Chloroethane	ND	20	μg/L	39	1,1,2,2-Tetrachloroethane	ND	20	μg/L
5	Bromomethane	ND	80	μg/L	40	1,2,3-Trichloropropane	ND	80	μg/L
6	Trichlorofluoromethane	ND	20	μg/L	41	Isopropylbenzene	ND	20	μg/L
7	1,1-Dichloroethene	ND	20	μg/L	42	Bromobenzene	ND	20	μg/L
8	Dichloromethane	ND	80	μg/L	43	n-Propylbenzene	ND	20	μg/L
9	trans-1,2-Dichloroethene	ND	20	µg/L	44	4-Chlorotoluene	ND	20	μg/L
10	1,1-Dichloroethane	ND	20	μg/L	45	2-Chlorotoluene	ND	20	μg/L
11	cis-1,2-Dichloroethene	ND	20	μg/L	46	1,3,5-Trimethylbenzene	ND	20	μg/L
12	Bromochloromethane	ND	20	μg/L	47	tert-Butylbenzene	ND	20	μg/L
13	Chloroform	ND	20	μg/L	48	1,2,4-Trimethylbenzene	ND	20	μg/L
14	2,2-Dichloropropane	ND	20	μg/L	49	sec-Butylbenzene	ND	20	μg/L
15	1,2-Dichloroethane	ND	20	μg/L	50	1,3-Dichlorobenzene	ND	20	μg/L
16	1,1,1-Trichloroethane	ND	20	µg/L	51	1,4-Dichlorobenzene	ND	20	μg/L
17	1,1-Dichloropropene	ND	20	μg/L	52	4-Isopropyltoluene	ND	20	μg/L
18	Carbon tetrachloride	ND	20	μg/L	53	1,2-Dichlorobenzene	ND	20	μg/L
19	Benzene	ND	10	µg/L	54	n-Butylbenzene	ND	20	μg/L
20	Dibromomethane	ND	20	μg/L	55	1,2-Dibromo-3-chloropropane (DBCP) ND	120	μg/L
21	1,2-Dichloropropane	ND	20	μg/L	56	1,2,4-Trichlorobenzene	ND	80	μg/L
22	Trichloroethene	ND	20	μg/L	57	Naphthalene	ND	80	μg/L
23	Bromodichloromethane	ND	20	μg/L	58	Hexachlorobutadiene	ND	80	μg/L
24	cis-1,3-Dichloropropene	ND	20	μg/L	59	1,2,3-Trichlorobenzene	ND	80	μg/L
25	trans-1,3-Dichloropropene	ND	20	μg/L	60	Surr: 1,2-Dichloroethane-d4	101		%REC
26	1,1,2-Trichloroethane	ND	20	μg/L	61	Surr: Toluene-d8	107		%REC
27	Toluene	ND	10	μg/L	62	Surr: 4-Bromofluorobenzene	92		%REC
28	1,3-Dichloropropane	ND	20	μg/L					
29	Dibromochloromethane	ND	20	μg/L					
30	1,2-Dibromoethane (EDB)	ND	80	μg/L					
31	Tetrachloroethene	2,100	20	μg/L					
32	1,1,1,2-Tetrachloroethane	ND	20	μg/L					
33	Chlorobenzene	ND	20	μg/L					
34	Ethylbenzene	ND	10	μg/L					
35	m,p-Xylene	ND	10	ug/L					

Reporting Limits were increased due to high concentrations of target analytes.

ND = Not Detected

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV16.

12/14/06

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

URS Corporation 811 Grier Dr.

Las Vegas, NV 89119

26698724/ Maryland Square

Alpha Analytical Number: URS06120822-23A

Client I.D. Number: MW-18 AP-MS

Holly Woodward Attn: Phone: (702) 492-7922

(702) 492-9149 Fax:

Sampled: 12/07/06

Received: 12/08/06 Analyzed: 12/12/06

Volatile Organics by GC/MS EPA Method SW8260B

			Reportir	ng				Reportir	ng
	Compound	Concentration	Limit		-	Compound	Concentration	Limit	
1	Dichlorodifluoromethane	ND	20	μg/L	36	Bromoform	ND	20	μg/L
2	Chloromethane	ND	80	μg/L	37	Styrene	ND	20	μg/L
3	Vinyl chloride	ND	20	μg/L	38	o-Xylene	ND	10	μg/L
4	Chloroethane	ND	20	μg/L	39	1,1,2,2-Tetrachloroethane	ND	20	μg/L
5	Bromomethane	ND	80	μg/L	40	1,2,3-Trichloropropane	ND	80	μg/L
6	Trichlorofluoromethane	ND	20	μg/L	41	Isopropylbenzene	ND	20	μg/L
7	1,1-Dichloroethene	ND	20	μg/L	42	Bromobenzene	ND	20	μg/L
8	Dichloromethane	ND	80	μg/L	43	n-Propylbenzene	ND	20	μg/L
9	trans-1,2-Dichloroethene	ND	20	μg/L	44	4-Chlorotoluene	ND	20	μg/L
10	1,1-Dichloroethane	ND	20	μg/L	45	2-Chlorotoluene	ND	20	μg/L
11	cis-1,2-Dichloroethene	ND	20	μg/L	46	1,3,5-Trimethylbenzene	ND	20	μg/L
12	Bromochloromethane	ND	20	μg/L	47	tert-Butylbenzene	ND	20	μg/L
13	Chloroform	ND	20	μg/L	48	1,2,4-Trimethylbenzene	ND	20	μg/L
14	2,2-Dichloropropane	ND	20	μg/L	49	sec-Butylbenzene	ND	20	μg/L
15	1,2-Dichloroethane	ND	20	μg/L	50	1,3-Dichlorobenzene	ND	20	μg/L
16	1,1,1-Trichloroethane	ND	20	μg/L	51	1,4-Dichlorobenzene	ND	20	μg/L
17	1,1-Dichloropropene	ND	20	μg/L	52	4-Isopropyltoluene	ND ·	20	μg/L
18	Carbon tetrachloride	ND	20	μg/L	53	1,2-Dichlorobenzene	ND	20	μg/L
19	Benzene	ND	10	μg/L	54	n-Butylbenzene	ND	20	μg/L
20	Dibromomethane	ND	20	μg/L	55	1,2-Dibromo-3-chloropropane (DBCP)	ND	120	μg/L
21	1,2-Dichloropropane	ND	20	μg/L	56	1,2,4-Trichlorobenzene	ND	80	μg/L
22	Trichloroethene	ND	20	μg/L	57	Naphthalene	ND	80	μg/L
23	Bromodichloromethane	ND	20	μg/L	58	Hexachlorobutadiene	ND	80	μg/L
24	cis-1,3-Dichloropropene	ND	20	μg/L	59	1,2,3-Trichlorobenzene	ND	80	μg/L
25	trans-1,3-Dichloropropene	ND	20	μg/L	60	Surr: 1,2-Dichloroethane-d4	113		%REC
26	1,1,2-Trichloroethane	ND	20	μg/L	61	Surr: Toluene-d8	100		%REC
27	Toluene	ND	10	μg/L	62	Surr: 4-Bromofluorobenzene	94		%REC
28	1,3-Dichloropropane	ND	20	μg/L					
29	Dibromochloromethane	ND	20	μg/L					
30	1,2-Dibromoethane (EDB)	ND	80	μg/L					
31	Tetrachloroethene	1,400	20	μg/L					
32	1,1,1,2-Tetrachloroethane	ND	20	μg/L					
33	Chlorobenzene	ND	20	µg/L					
34	Ethylbenzene	ND	10	μg/L					

Reporting Limits were increased due to high concentrations of target analytes.

ND

ND = Not Detected

35 m,p-Xylene

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer

Report Date

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV16.

μg/L

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

URS Corporation 811 Grier Dr. Las Vegas, NV 89119

egas, NV 89119

Job#: 26698724/ Maryland Square

Alpha Analytical Number: URS06120822-24A

Client I.D. Number: MW-13 AP-MS

Attn: Holly Woodward Phone: (702) 492-7922

Fax: (702) 492-9149

Sampled: 12/07/06 Received: 12/08/06 Analyzed: 12/12/06

Volatile Organics by GC/MS EPA Method SW8260B

			Reportir	ng				Reportin	ng
	Compound	Concentration	Limit			Compound	Concentration	Limit	
1	Dichlorodifluoromethane	ND	40	μg/L	36	Bromoform	ND	40	μg/L
2	Chloromethane	ND	160	μg/L	37	Styrene	ND	40	μg/L
3	Vinyl chloride	ND	40	μg/L	38	o-Xylene	ND	20	μg/L
4	Chloroethane	ND	40	μg/L	39	1,1,2,2-Tetrachloroethane	ND	40	μg/L
5	Bromomethane	ND	160	μg/L	40	1,2,3-Trichloropropane	ND	160	μg/L
6	Trichlorofluoromethane	ND	40	μg/L	41	Isopropylbenzene	ND	40	μg/L
7	1,1-Dichloroethene	ND	40	μg/L	42	Bromobenzene	ND	40	μg/L
8	Dichloromethane	ND	160	μg/L	43	n-Propylbenzene	ND	40	μg/L
9	trans-1,2-Dichloroethene	ND	40	μg/L	44	4-Chlorotoluene	ND	40	μg/L
10	1,1-Dichloroethane	ND	40	μg/L	45	2-Chlorotoluene	ND	40	μg/L
11	cis-1,2-Dichloroethene	ND	40	μg/L	46	1,3,5-Trimethylbenzene	ND	40	μg/L
12	Bromochloromethane	ND	40	μg/L	47	tert-Butylbenzene	ND	40	μg/L
13	Chloroform	ND	40	μg/L	48	1,2,4-Trimethylbenzene	ND	40	μg/L
14	2,2-Dichloropropane	ND	40	μg/L	49	sec-Butylbenzene	ND	40	μg/L
15	1,2-Dichloroethane	ND	40	μg/L	50	1,3-Dichlorobenzene	ND	40	μg/L
16	1,1,1-Trichloroethane	ND	40	μg/L	51	1,4-Dichlorobenzene	ND	40	μg/L
17	1,1-Dichloropropene	ND	40	μg/L	52	4-Isopropyltoluene	ND	40	μg/L
18	Carbon tetrachloride	ND	40	μg/L	53	1,2-Dichlorobenzene	ND	40	μg/L
19	Benzene	ND	20	μg/L	54	n-Butylbenzene	ND	40	μg/L
20	Dibromomethane	ND	40	μg/L	55	1,2-Dibromo-3-chloropropane (DBCP) ND	240	μg/L
21	1,2-Dichloropropane	ND	40	μg/L	56	1,2,4-Trichlorobenzene	ND	160	μg/L
22	Trichloroethene	ND	40	μg/L	57	Naphthalene	ND	160	μg/L
23	Bromodichloromethane	ND	40	μg/L	58	Hexachlorobutadiene	ND	160	μg/L
24	cis-1,3-Dichloropropene	ND	40	μg/L	59	1,2,3-Trichlorobenzene	ND	160	μg/L
25	trans-1,3-Dichloropropene	ND	40	μg/L	60	Surr: 1,2-Dichloroethane-d4	116		%REC
26	1,1,2-Trichloroethane	ND	40	μg/L	61	Surr: Toluene-d8	104		%REC
27	Toluene	ND	20	μg/L	62	Surr: 4-Bromofluorobenzene	93		%REC
28	1,3-Dichloropropane	ND	40	μg/L					
29	Dibromochloromethane	ND	40	μg/L					
30	1,2-Dibromoethane (EDB)	ND	160	μg/L					
31	Tetrachloroethene	3,200	40	μg/L					

Reporting Limits were increased due to high concentrations of target analytes.

ND

ND

ND

ND = Not Detected

1,1,1,2-Tetrachloroethane

Chlorobenzene

Ethylbenzene

m,p-Xylene

34

Roger Scholl Kandy Saulner Walter Hinchman, Quality Assurance Officer

Roger L. Scholl, Ph.D., Laboratory Director • Randy Gardner, Laboratory Manager • Walter Hinchman, Quality Assurance Officer

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com
Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV16.

μg/L

μg/L

μg/L

12/14/06

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

VOC Sample Preservation Report

Project: 26698724/ Maryland Square Work Order: URS06120822

Alpha's Sample ID	Client's Sample ID	Matrix	рН	
06120822-01A	MW-16 AP-MS	Aqueous	6	
06120822-02A	MW-22 AP-MS	Aqueous	2	
06120822-03A	MW-12 AP-MS	Aqueous	2	
06120822-04A	MW-10 AP-MS	Aqueous	2	
06120822-05A	MW-3 AP-MS	Aqueous	2	
06120822-06A	MW-8 AP-MS	Aqueous	2	
06120822-07A	MW-15 AP-MS	Aqueous	5	
06120822-08A	MW-7 AP-MS	Aqueous	2	
06120822-09A	MW-24 AP-MS	Aqueous	2	
06120822-10A	MW-21 AP-MS	Aqueous	2	
06120822-11A	MW-5 AP-MS	Aqueous	2	
06120822-12A	MW-9 AP-MS	Aqueous	2	
06120822-13A	MW-27 AP-MS	Aqueous	2	
06120822-14A	MW-19 AP-MS	Aqueous	4	
06120822-15A	MW-17 AP-MS	Aqueous	2	
06120822-16A	MW-25 AP-MS	Aqueous	2	
06120822-17A	MW-6 AP-MS	Aqueous	2	
06120822-18A	MW-1 AP-MS	Aqueous	2	
06120822-19A	MW-14 AP-MS	Aqueous	2	
06120822-20A	MW-2 AP-MS	Aqueous	2	
06120822-21A	MW-20 AP-MS	Aqueous	6	
06120822-22A	MW-23 AP-MS	Aqueous	2	
06120822-23A	MW-18 AP-MS	Aqueous	2	
06120822-24A	MW-13 AP-MS	Aqueous	. 2	

12/14/06 **Report Date**

Billing Information:

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

TEL: (775) 355-1044 FAX: (775) 355-0406

WorkOrder: URS06120822

NVAMENDED.

Report Due By: 5:00 PM On: 15-Dec-06

Client:

URS Corporation 811 Grier Dr.

Las Vegas, NV 89119

Report Attention: Holly Woodward

CC Report:

TEL: (702) 492-7922 (702) 492-9149

holly_woodward@urscorp.com

26698724/ Maryland Square

Holly Woodward

PO: Client's COC #: 15338 EDD Required: No

Sampled by: Client

4 °C

Cooler Temp Samples Received **Date Printed**

08-Dec-06 13-Dec-06

OC Level: S3 = Final Rot MRLK LCS MS/MSD With Surrogates

											Request	ed Tests			
Alpha	Client		Collection		Bottles		DW0 #	ALKALINIT Y_W	ANIONS(A) _W	ANIONS(B) _W	ANIONS(C) _W	METALS_D W	TOC_W	voc_w	Samula Damarka
Sample ID	Sample ID	Matrix	k Date	ORG	SUB	TAT	PWS#								Sample Remarks
JRS06120822-01A	MW-16 AP-MS	AQ	12/04/06 14:17	3	0	5								8260_N	
JRS06120822-02A	MW-22 AP-MS	AQ	12/04/06 15:12	3	0	5							• .	8260_N	
JRS06120822-03 <i>A</i>	MW-12 AP-MS	AQ	12/04/06 16:22	3	0	5								8260_N	
JRS06120822-04 <i>A</i>	MW-10 AP-MS	AQ	12/05/06 10:22	3	0	5								8260_N	
JRS06120822-05 <i>A</i>	MW-3 AP-MS	AQ	12/05/06 10:59	3	0	5								8260_N	
JRS06120822-06 <i>P</i>	MW-8 AP-MS	AQ	12/05/06 11:40	3	0	5								8260_N	
JRS06120822-07 <i>F</i>	MW-15 AP-MS	AQ	12/05/06 12:15	3	0	5								8260_N	
JRS06120822-08A	MW-7 AP-MS	AQ	12/05/06 12:58	3	0	5				THE PARTY OF THE P				8260_N	
JRS06120822-09A	MW-24 AP-MS	AQ	12/05/06 14:08	3	0	5								8260_N	
JRS06120822-10A	MW-21 AP-MS	AQ	12/05/06 14:49	3	0	5								8260_N	

Comments:

Security seals intact. Frozen ice. TOC/PH=2. Amended 12/13/06 @ 9:05- deleted ALK, SO4 & Chloride from -18 as a non preserved bottle was not supplied- client will resample per Victoria. LE:

Logged in by:

Signature

Print Name

Company Alpha Analytical, Inc. Date/Time

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report.

Matrix Type: AQ(Aqueous) AR(Air) SO(Soil) WS(Waste) DW(Drinking Water) OT(Other)

Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other

Billing Information:

CHAIN-OF-CUSTODY RECORD

NV

Page: 2

: 2 of 3

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778 TEL: (775) 355-1044 FAX: (775) 355-0406

AD D ZOODM

Report Due By: 5:00 PM On: 15-Dec-06

Client:

CC Report:

URS Corporation 811 Grier Dr.

Las Vegas, NV 89119

Report Attention: Holly Woodward

Job :

EMail

holly_woodward@urscorp.com

26698724/ Maryland Square

Holly Woodward

PO:

TEL: (702) 492-7922

FAX: (702) 492-9149

Client's COC #: 15338

EDD Required : **No**Sampled by : Client

4°C

Cooler Temp Samples Received

WorkOrder: URS06120822

Date Printed

08-Dec-06

13-Dec-06

QC Level: S3 = Final Rpt, MBLK, LCS, MS/MSD With Surrogates

	•										Requeste	d Tests			
Alpha	Client		Collection		Bottles			ALKALINIT Y_W	ANIONS(A) _W	ANIONS(B) _W	ANIONS(C)	METALS_D W	TOC_W	voc_w	
Sample ID	Sample ID	Matrix	Date	ORG	SUB	TAT	PWS#								Sample Remarks
URS06120822-11A	MW-5 AP-MS	AQ	12/05/06 15:42	3	0	5								8260_N	
URS06120822-12 <i>F</i>	MW-9 AP-MS	AQ	12/06/06 09:59	3	0	5								8260_N	
URS06120822-13A	MW-27 AP-MS	AQ	12/06/06 11:07	3	0	5								8260_N	
URS06120822-14 <i>F</i>	MW-19 AP-MS	AQ	12/06/06 12:09	3	0	5					-			8260_N	
URS06120822-15A	MW-17 AP-MS	AQ	12/06/06 13:55	3	0	5								8260_N	
URS06120822-16A	MW-25 AP-MS	AQ	12/06/06 14:49	6	0	5		Alk	NO3,SO4,Cl	NO3,SO4,Cl	NO3,SO4,Cl	Fe,Mn	TOC	8260_N	All bottles rec'd pres. So unable to run
URS06120822-17 <i>F</i>	MW-6 AP-MS	AQ	12/07/06 10:45	3	0	5								8260_N	
URS06120822-18A	MW-1 AP-MS	AQ	12/07/06 12:23	6	0	5			NO3			Fe,Mn	TOC	8260_N	TOC/PH=4
URS06120822-19A	MW-14 AP-MS	AQ	12/07/06 13:03	3	0	5								8260_N	·
URS06120822-20A	MW-2 AP-MS	AQ	12/07/06 13:37	3	0	5						-		8260_N	

Comments:

Security seals intact. Frozen ice. TOC/PH=2. Amended 12/13/06 @ 9:05- deleted ALK, SO4 & Chloride from -18 as a non preserved bottle was not supplied-client will resample per Victoria. LE:

Logged in by:

Patricia Eduasa

Print Name Latricia Edrosa Company

Alpha Analytical, Inc.

Plate/Time 9:05

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report.

Matrix Type: AQ(Aqueous) AR(Air) SO(Soil) WS(Waste) DW(Drinking Water) OT(Other)

Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other

Billing Information:

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

TEL: (775) 355-1044 FAX: (775) 355-0406

WorkOrder: URS06120822

Report Due By: 5:00 PM On: 15-Dec-06

08-Dec-06

Client:

URS Corporation 811 Grier Dr.

QC Level: S3

Las Vegas, NV 89119

Report Attention: Holly Woodward

CC Report:

TEL: (702) 492-7922

FAX: (702) 492-9149

EMail holly_woodward@urscorp.com

Holly Woodward

26698724/ Maryland Square Job:

Client's COC #: 15338 PO:

EDD Required: No

Sampled by: Client

4 °C

Cooler Temp Samples Received

Date Printed

13-Dec-06

= Final Rpt, MBLK, LCS, MS/MSD With Surrogates

											Request	ed Tests			
	Client Sample ID		Collection Date	No. of ORG	Bottles		PWS#	ALKALINIT Y_W	ANIONS(A) _W	ANIONS(B) _W	ANIONS(C)	METALS_D W	тос_w	voc_w	Sample Remarks
Sample ID URS06120822-21A			12/07/06 14:14	3	0	5	rws#							8260_N	Oampie Remarks
URS06120822-22A	MW-23 AP-MS	AQ	12/07/06 15:07	3	0	5								8260_N	
URS06120822-23A	MW-18 AP-MS	AQ	12/07/06 15:42	6	0	5		Alk	NO3,SO4,CI	NO3,SO4,CI	NO3,SO4,Cl	Fe,Mn	TOC	8260_N	
URS06120822-24A	MW-13 AP-MS	AQ	12/07/06 16:07	6	0	5		Alk	NO3,SO4,CI	NO3,SO4,Cl	NO3,SO4,CI	Fe,Mn	TOC	8260_N	

Comments:

Security seals intact. Frozen ice. TOC/PH=2. Amended 12/13/06 @ 9:05- deleted ALK, SO4 & Chloride from -18 as a non preserved bottle was not supplied- client will resample per Victoria. LE:

Logged in by:

Signature

Print Name

Company Alpha Analytical, Inc. Date/Time

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report.

Matrix Type: AQ(Aqueous) AR(Air) SO(Soil) WS(Waste) DW(Drinking Water) OT(Other)

Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other

Billing Information: Name URS Corporation Address SII Grier Drive	255 Glor	Analytical, Inc. ndale Avenue, Suite 21 Nevada 89431-5778	AZ	Collected From CA NV X OR OTHER	WA
Address 811 Gree Drive City, State, Zip Las Vegas NV 8911 Phone Number 702-492-7900 ax 702-49		775) 355-1044 5) 355-0406) /	Analyses Requi	red 15338
Client Name ScuMe	P.O. # Maryland Sovare EMail Address	Job#26698724	t [3]	7////	Required OC Level?
City, State, Zip	Phone # 102-492-7922	Fax # 102-492-9	149 5	/ / / /	EDD / EDF? YES NO
Time Date Sampled Sampled Sampled Sampled Date Sampled Sampled Sampled Date Sampled Sampled Date Sampled by See Key	Report Attention	Total and t	type of / (%) /	'	Global ID #
Sampled Sampled Below Lab ID Number (Use Only) 14:17 174/14 A P MRS06 208 22 -01	Sample Description MW = 16 AP = MS	TAT Filtered ** See b	1./	- 	/ REMARKS
15:12 1 -02	MW-22		1/1		
16:22 \$ -03	WM-15				
10:22 12/5/00 -04	WM-10				
10.50	MW-3				
11:40 -06	Mw-8				
12.58 -08	MW-15				
12:58 -08 14:08 -09	MW-7 MW-24				
14:49 -10	Mw-21				
15:42	MW-HHW 5				
9:59:01/4 -12	MM-9 V				
ADDITIONAL INSTRUCTIONS:	WM-57				
ADDITIONAL INSTRUCTIONS:					
Signature	Print Name		Company		Date Timé
Relinquished by / Leby Wesom	1 Holly Woodward		URS		12-7-0 4:29
Received by	V. SMITH	Olps	\		12-706 440
Relinquished by	V-SMITH		for		12-7-46 4:40
Received by Pasull Relinquished by	Jash Yascer	- HPW			12/18/04420
Received by		· · · · · · · · · · · · · · · · · · ·			
*Key: AQ - Aqueous SO - Soil WA - Was	le OT - Other AR - Air **: L	-Liter V-Voa S-Soil	Jar O-Orbo	T-Tedlar B-Bras	ss P-Plastic OT-Other

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this coc. The liability of the laboratory is limited to the amount paid for the report.

Billing Information: Name URS CORPORATION		nalytical, Inc.	Samples Collect AZ CA		n State?
Name VRS Orporation		e Avenue, Suite 21 ada 89431-5778	ID OR	OTHER	Page # of
Address 811 Gree Dive City, State, Zip Las Vegas NV 89119	Phone (775)) 355-1044	Anah	.coc Docuised	/ 15339
Phone Number 707-497-1900 Fax 702-497-9146	Fax (775) 3		1.	ses Required	
Client Name P.O. #	Maryland Square Jot	°#26698724	7.877.		Required QC Level?
Address EMail Add	tress Juspenson and DUC	35000000	78/4	' \$	/ 1 11 111 IV
City, State, Zip Phone #	2-492-7922 Fai	× + 02 - 492 - 9149	2 68 V		EDD / EDF? YES NO
Time Date Matrix* Sampled by Report Attent	tion	Total and type of	101 ST 8/2		Global ID #
Sampled Sampled See Key Below Lab ID Number (Office Use Only)	Sample Description	TAT Field ** See below	/ 00/F/65/65		REMARKS
177	W-19 AP-MS	NO 3 V	\times		
	1W-M		X		
	w-25		X		
		161955	X		-
		10	1/1/4		
		ie		X	
	1W-60	30	X		
100	161-1	34	$\langle \rangle$		
1		19/00			
		100	XX		
*				V	
	1 W-14	3004			
26	m v1-7				
ADDITIONAL INSTRUCTIONS:					
Signature	Print Name		Company		Date Time
Relinquished by Goly Woodm	lolywoodund	URS,		1-	2.7.06 4:39
Received by	MITH	alpho		12-	706 4.49
Relinquished by	MITH	01/2		12	-7-06 4140
Received by Alland	Tobbe Pascal	Alpu		~ 45	2/8/06
Relinquished by					
Received by					
*Key: AQ - Aqueous SO - Soil WA - Waste O	T - Other AR - Air **: L-Lit	er V-Voa S-Soil Jar	O-Orbo T-Tedl	ar B-Brass	P-Plastic OT-Other

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this coc. The liability of the laboratory is limited to the amount paid for the report.

Address 8	25 C	arporation er Drive		2 5	Alpha A 255 Glenda Sparks, Nev	le Av	enue, 8943 ⁻	Suite 21 -5778		Sa AZ ID	mple !	S Co CA OR	llect	ed Fi NV OTI	rom X HER	Whic WA	h State?	e# of
	107-49	1egas, NV 8911 2.7900 Fax 202.49			Phone (775 ax (775) 3	55-0	406					Ana	alyse	s Rec	quired	t		12421
Client Name Address City, State, Zip	5	ane	P.O. # M.C EMail / Y.Q Phone	uylands nddress yywwoo oz-492-	quare down be	b# 26 20 24	698 (50	5724 Corp. ((an ,	JM2007	30.	3.24.34	K	20.8 Felly			/ /	uired QC Level? II III IV ? YES NO
Sampled Sampled S		ffice Use Sampled by Only Lab ID Number	Report A	ttention Description	11661		Field Filtered	Total and type of				3 3 3 3	A PAIR				Global ID #_	
14:14 (21/2)	Aq	-21	MW-20	D AP	MS	<i>''</i>	N	300A	1 '				Y				/ HE	MARKS
15:07 °(<u>-22</u> -23	MW-2-3	1				300A 300A						~				
								Igions		X	,							
1			2					16			4	×	\times					
16:61		-74	raw-13					3USA Lalans	<u>X</u>									
								16			4	¥						
						,	7	14					X					
ADDITIONA	L INSTE	RUCTIONS:			7.						•							
	0		T		*													
Relinquished by	Signa	hy Wooding	Holly	Print Name	(m, d)		+		(10	25	mpany	/				-	Date 2-7-06	Time 4:39
Received by		- Tools	V (MIT	7-1	4			06		9				-		17	7	(V) V()
Relinquished by	Zin	75	V.SMIT	1-			1	Vent			-					12	-7N	4'11
Received by Relinquished by	18/1	Pascul	Tash	rasc	u			HIPL	<u></u>							12	2/8/06	9:30
Received by				•			+				···		X:		***************************************			
*Key: AQ - Aqued	ous S	SO - Soil WA - Wast	e OT - Other		**: L-Lite	er	V-V	oa S-So	il Jar	0-	Orbo	T-	Tedlar	· E	3-Bras	s	P-Plastic	OT-Other

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this coc. The liability of the laboratory is limited to the amount paid for the report.